Abstract

A high accuracy wavelength encoding fiber optic sensor is shown to display surprisingly little sensitivity to temperature or optical source drift. Average measurement error of 0.1 % full scale has been demonstrated over a displacement range of 10 mm.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Berthold, “Overview of Fiber Optic Intensity Sensors for Industry,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 2–8 (1987).
  2. N. E. Lewis et al., “Fiber Optic Sensors Using Surface Reflections,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 39–45 (1984).
  3. R. O. Stanton, “Digital Optical Transducers for Helicopter Flight Control,” Proc. Soc. Photo-Opt. Instrum. Eng. 412, 122–000 (1983).
  4. W. B. Spillman, R. L. Gravel, “Moving Fiber-Optic Hydrophone,” Opt. Lett. 5, 30–31 (1980).
    [CrossRef] [PubMed]
  5. W. B. Spillman, D. H. McMahon, “Schlieren Multimode Fiber Optic Hydrophone,” Appl. Phys. Lett. 37, 145–147 (1980).
    [CrossRef]
  6. W. B. Spillman et al., “Self-Referencing Fiber Optic Rotary Displacement Sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 305–310 (1988).
  7. M. C. Hutley, “Zone Plate Optical Displacement Sensor,” in Proceedings, Second International Conference on Fibre Optic Sensors, IEEE publication 221, (Stutggart, F.R.G., 1984).
  8. G. E. Miller, “Fiber Optic Sensors for Aircraft,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 20–25 (1987).
  9. G. Adamovsky, “Time Domain Referencing in Intensity Modulation Fiber Optic Sensing Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 661, 145–149 (1986).
  10. W. B. Spillman, J. R. Lord, “Self-Referencing Multiplexing Technique for Intensity-Modulating Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 718, 182–191 (1986).
  11. W. B. Spillman et al., “Self-Referencing Frequency Division Multiplexing Technique for Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 200–205 (1987).
  12. L. A. Johnson, S. C. Jensen, “Problems and Approaches for Remote Fiber Optic Absolute Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 566, 45–53 (1985).
  13. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

1988 (1)

W. B. Spillman et al., “Self-Referencing Fiber Optic Rotary Displacement Sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 305–310 (1988).

1987 (3)

G. E. Miller, “Fiber Optic Sensors for Aircraft,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 20–25 (1987).

J. W. Berthold, “Overview of Fiber Optic Intensity Sensors for Industry,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 2–8 (1987).

W. B. Spillman et al., “Self-Referencing Frequency Division Multiplexing Technique for Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 200–205 (1987).

1986 (2)

G. Adamovsky, “Time Domain Referencing in Intensity Modulation Fiber Optic Sensing Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 661, 145–149 (1986).

W. B. Spillman, J. R. Lord, “Self-Referencing Multiplexing Technique for Intensity-Modulating Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 718, 182–191 (1986).

1985 (1)

L. A. Johnson, S. C. Jensen, “Problems and Approaches for Remote Fiber Optic Absolute Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 566, 45–53 (1985).

1984 (1)

N. E. Lewis et al., “Fiber Optic Sensors Using Surface Reflections,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 39–45 (1984).

1983 (1)

R. O. Stanton, “Digital Optical Transducers for Helicopter Flight Control,” Proc. Soc. Photo-Opt. Instrum. Eng. 412, 122–000 (1983).

1980 (2)

W. B. Spillman, R. L. Gravel, “Moving Fiber-Optic Hydrophone,” Opt. Lett. 5, 30–31 (1980).
[CrossRef] [PubMed]

W. B. Spillman, D. H. McMahon, “Schlieren Multimode Fiber Optic Hydrophone,” Appl. Phys. Lett. 37, 145–147 (1980).
[CrossRef]

Adamovsky, G.

G. Adamovsky, “Time Domain Referencing in Intensity Modulation Fiber Optic Sensing Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 661, 145–149 (1986).

Berthold, J. W.

J. W. Berthold, “Overview of Fiber Optic Intensity Sensors for Industry,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 2–8 (1987).

Gravel, R. L.

Hutley, M. C.

M. C. Hutley, “Zone Plate Optical Displacement Sensor,” in Proceedings, Second International Conference on Fibre Optic Sensors, IEEE publication 221, (Stutggart, F.R.G., 1984).

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

Jensen, S. C.

L. A. Johnson, S. C. Jensen, “Problems and Approaches for Remote Fiber Optic Absolute Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 566, 45–53 (1985).

Johnson, L. A.

L. A. Johnson, S. C. Jensen, “Problems and Approaches for Remote Fiber Optic Absolute Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 566, 45–53 (1985).

Lewis, N. E.

N. E. Lewis et al., “Fiber Optic Sensors Using Surface Reflections,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 39–45 (1984).

Lord, J. R.

W. B. Spillman, J. R. Lord, “Self-Referencing Multiplexing Technique for Intensity-Modulating Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 718, 182–191 (1986).

McMahon, D. H.

W. B. Spillman, D. H. McMahon, “Schlieren Multimode Fiber Optic Hydrophone,” Appl. Phys. Lett. 37, 145–147 (1980).
[CrossRef]

Miller, G. E.

G. E. Miller, “Fiber Optic Sensors for Aircraft,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 20–25 (1987).

Spillman, W. B.

W. B. Spillman et al., “Self-Referencing Fiber Optic Rotary Displacement Sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 305–310 (1988).

W. B. Spillman et al., “Self-Referencing Frequency Division Multiplexing Technique for Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 200–205 (1987).

W. B. Spillman, J. R. Lord, “Self-Referencing Multiplexing Technique for Intensity-Modulating Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 718, 182–191 (1986).

W. B. Spillman, R. L. Gravel, “Moving Fiber-Optic Hydrophone,” Opt. Lett. 5, 30–31 (1980).
[CrossRef] [PubMed]

W. B. Spillman, D. H. McMahon, “Schlieren Multimode Fiber Optic Hydrophone,” Appl. Phys. Lett. 37, 145–147 (1980).
[CrossRef]

Stanton, R. O.

R. O. Stanton, “Digital Optical Transducers for Helicopter Flight Control,” Proc. Soc. Photo-Opt. Instrum. Eng. 412, 122–000 (1983).

Appl. Phys. Lett. (1)

W. B. Spillman, D. H. McMahon, “Schlieren Multimode Fiber Optic Hydrophone,” Appl. Phys. Lett. 37, 145–147 (1980).
[CrossRef]

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (9)

W. B. Spillman et al., “Self-Referencing Fiber Optic Rotary Displacement Sensor,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 305–310 (1988).

J. W. Berthold, “Overview of Fiber Optic Intensity Sensors for Industry,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 2–8 (1987).

N. E. Lewis et al., “Fiber Optic Sensors Using Surface Reflections,” Proc. Soc. Photo-Opt. Instrum. Eng. 478, 39–45 (1984).

R. O. Stanton, “Digital Optical Transducers for Helicopter Flight Control,” Proc. Soc. Photo-Opt. Instrum. Eng. 412, 122–000 (1983).

G. E. Miller, “Fiber Optic Sensors for Aircraft,” Proc. Soc. Photo-Opt. Instrum. Eng. 985, 20–25 (1987).

G. Adamovsky, “Time Domain Referencing in Intensity Modulation Fiber Optic Sensing Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 661, 145–149 (1986).

W. B. Spillman, J. R. Lord, “Self-Referencing Multiplexing Technique for Intensity-Modulating Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 718, 182–191 (1986).

W. B. Spillman et al., “Self-Referencing Frequency Division Multiplexing Technique for Fiber Optic Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 200–205 (1987).

L. A. Johnson, S. C. Jensen, “Problems and Approaches for Remote Fiber Optic Absolute Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 566, 45–53 (1985).

Other (2)

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

M. C. Hutley, “Zone Plate Optical Displacement Sensor,” in Proceedings, Second International Conference on Fibre Optic Sensors, IEEE publication 221, (Stutggart, F.R.G., 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Exposure of holographic plate for chirped grating.

Fig. 2
Fig. 2

Schematic diagram of fiber optic linear displacement sensor test configuration.

Fig. 3
Fig. 3

Inferred vs actual grating position and inferred position error as percent of full scale.

Fig. 4
Fig. 4

Error in inferred position as a function of temperature.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

s = λ 2 sin θ sin ϕ .
s ( sin θ 0 + sin θ 1 ) = m λ,
2 θ = tan 1 ( D + x h ) , ϕ = π 2 1 2 tan 1 ( D + x h ) .
x = λ g s 1 ( sin θ 0 + sin θ 1 ) s 0 s 1 .
I ( λ ) = T ( λ, x ) I 0 ( λ ) .
I 0 ( λ max ) [ d T d λ ] λ max + T ( λ max ) [ d I 0 d λ ] λ max = 0 .
T ( λ, x ) = exp { [ λ λ g ( x ) σ g ] 2 } , I 0 ( λ ) = I 0 exp [ ( λ λ 0 σ 0 ) 2 ] ,
λ g ( x ) = λ max + [ σ g 2 σ 0 2 ] Δ ,

Metrics