Abstract

A theoretical evaluation has been made of the optical loss of anodically oxidized alumina with implanted metallic columns. It has been shown that microcolumns arranged in the alumina film give rise to an optical loss that strongly depends on the direction of polarization. A loss difference between two polarizations, horizontal and vertical to the column axis, is larger than 10 dB/μm in the infrared. Therefore the metal implanted alumina is expected to be an efficient polarizer with large extinction ratio and low insertion loss.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. R. Bird, W. A. Shurcliff, “Pile-of-Plates Polarizers for the Infrared: Improvement in Analysis and Design,” J. Opt. Soc. Am. 49, 235–237 (1959).
    [CrossRef]
  2. J. B. Young, H. A. Graham, E. W. Peterson, “Wire Grid Infrared Polarizer,” Appl. Opt. 4, 1023–1026 (1965).
    [CrossRef]
  3. G. Rupprecht, D. M. Ginsberg, J. D. Leslie, “Pyrolytic Graphite Transmission Polarizer for Infrared Radiation,” J. Opt. Soc. Am. 52, 665–669 (1962).
    [CrossRef]
  4. T. Yokogawa, M. Ogura, T. Kajiwara, “Low-Loss Short-Wavelength Optical Waveguides Using ZnSe-ZnS Strained-Layer Superlattices,” Appl. Phys. Lett. 52, 120–122 (1988).
    [CrossRef]
  5. K. Baba, K. Shiraishi, K. Obi, T. Kataoka, S. Kawakami, “Optical Properties of Very Thin Metal Films for Laminated Polarizers,” Appl. Opt. 27, 2554–2560 (1988).
    [CrossRef] [PubMed]
  6. M. Miyagi, Y. Hiratani, T. Taniguchi, S. Nishida, “Aluminum Anodizing Technique for Fabricating Optical Thin-Film Waveguides: A Proposal,” Appl. Opt. 26, 970–971 (1987).
    [CrossRef] [PubMed]
  7. F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coating on Aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
    [CrossRef]
  8. For example, see W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, Mass., 1961), Chap. 13.
  9. K. Kudo, Kiso Bussei Zuhyo (Table of Fundamental Properties of Materials) (Kyoritsu Shuppan, Tokyo, 1972), in Japanese.
  10. M. L. Lang, W. L. Wolfe, “Optical Constants of Fused Silica and Sapphire from 0.3 to 25 Mm,” Appl. Opt. 22, 1267–1268 (1983).
    [CrossRef] [PubMed]
  11. G. Hass, “On the Preparation of Hard Oxide Films with Precisely Controlled Thickness on Evaporated Aluminum Mirrors,” J. Opt. Soc. Am. 39, 532–540 (1949).
    [CrossRef]
  12. E. D. Palik, Ed. Handbook of Optical Constants of Solids (Academic Press, New York, 1985), Part II.

1988 (2)

T. Yokogawa, M. Ogura, T. Kajiwara, “Low-Loss Short-Wavelength Optical Waveguides Using ZnSe-ZnS Strained-Layer Superlattices,” Appl. Phys. Lett. 52, 120–122 (1988).
[CrossRef]

K. Baba, K. Shiraishi, K. Obi, T. Kataoka, S. Kawakami, “Optical Properties of Very Thin Metal Films for Laminated Polarizers,” Appl. Opt. 27, 2554–2560 (1988).
[CrossRef] [PubMed]

1987 (1)

1983 (1)

1965 (1)

1962 (1)

1959 (1)

1953 (1)

F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coating on Aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[CrossRef]

1949 (1)

Baba, K.

Bird, G. R.

Ginsberg, D. M.

Graham, H. A.

Hass, G.

Hiratani, Y.

Hunter, M. S.

F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coating on Aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[CrossRef]

Kajiwara, T.

T. Yokogawa, M. Ogura, T. Kajiwara, “Low-Loss Short-Wavelength Optical Waveguides Using ZnSe-ZnS Strained-Layer Superlattices,” Appl. Phys. Lett. 52, 120–122 (1988).
[CrossRef]

Kataoka, T.

Kawakami, S.

Keller, F.

F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coating on Aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[CrossRef]

Kudo, K.

K. Kudo, Kiso Bussei Zuhyo (Table of Fundamental Properties of Materials) (Kyoritsu Shuppan, Tokyo, 1972), in Japanese.

Lang, M. L.

Leslie, J. D.

Miyagi, M.

Nishida, S.

Obi, K.

Ogura, M.

T. Yokogawa, M. Ogura, T. Kajiwara, “Low-Loss Short-Wavelength Optical Waveguides Using ZnSe-ZnS Strained-Layer Superlattices,” Appl. Phys. Lett. 52, 120–122 (1988).
[CrossRef]

Panofsky, W. K. H.

For example, see W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, Mass., 1961), Chap. 13.

Peterson, E. W.

Phillips, M.

For example, see W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, Mass., 1961), Chap. 13.

Robinson, D. L.

F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coating on Aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[CrossRef]

Rupprecht, G.

Shiraishi, K.

Shurcliff, W. A.

Taniguchi, T.

Wolfe, W. L.

Yokogawa, T.

T. Yokogawa, M. Ogura, T. Kajiwara, “Low-Loss Short-Wavelength Optical Waveguides Using ZnSe-ZnS Strained-Layer Superlattices,” Appl. Phys. Lett. 52, 120–122 (1988).
[CrossRef]

Young, J. B.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

T. Yokogawa, M. Ogura, T. Kajiwara, “Low-Loss Short-Wavelength Optical Waveguides Using ZnSe-ZnS Strained-Layer Superlattices,” Appl. Phys. Lett. 52, 120–122 (1988).
[CrossRef]

J. Electrochem. Soc. (1)

F. Keller, M. S. Hunter, D. L. Robinson, “Structural Features of Oxide Coating on Aluminum,” J. Electrochem. Soc. 100, 411–419 (1953).
[CrossRef]

J. Opt. Soc. Am. (3)

Other (3)

E. D. Palik, Ed. Handbook of Optical Constants of Solids (Academic Press, New York, 1985), Part II.

For example, see W. K. H. Panofsky, M. Phillips, Classical Electricity and Magnetism (Addison-Wesley, Reading, Mass., 1961), Chap. 13.

K. Kudo, Kiso Bussei Zuhyo (Table of Fundamental Properties of Materials) (Kyoritsu Shuppan, Tokyo, 1972), in Japanese.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structural model of the anodized alumina film.

Fig. 2
Fig. 2

Schematic illustration for the scattering of H-polarized light by a single column.

Fig. 3
Fig. 3

Theoretically calculated loss spectra of gold-, aluminum-, and nickel-implanted alumina films. Thick and thin lines indicate the losses for H- and V-polarizations, respectively. Radii and intervals of columns are assumed to be 60 Å and 400 Å in (a), and 165 Å and 1100 Å in (b).

Fig. 4
Fig. 4

Percentage of the scattering and absorption losses to the total loss. The curves were calculated for (a) gold- and (b) nickel-implanted alumina of various column sizes, using Eqs. (8) and (9).

Fig. 5
Fig. 5

Refractive indices of gold, aluminum, and nickel.12 Thick and thin lines denote real and imaginary parts, n and k, of the indices, respectively.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

a b λ t .
E i x = E o e j k 1 z = E o e j k 1 r cos θ ,
E s x = E o m = A m H m ( 2 ) ( k 1 r ) e j m θ ,
E 1 x = E o e j k 1 r cos θ + E o m = A m H m ( 2 ) ( k 1 r ) e j m θ = E o m = [ ( j ) m J m ( k 1 r ) + A m H m ( 2 ) ( k 1 r ) ] e j m θ .
E 2 x = E o m = B m J m ( k 2 r ) e j m θ ,
A m = ( j ) m J m ( k 1 a ) J m ( k 2 a ) n 1 n 2 J m ( k 1 a ) J m ( k 2 a ) H m ( 2 ) ( k 1 a ) J m ( k 2 a ) n 1 n 2 H m ( 2 ) ( k 1 a ) J m ( k 2 a ) ,
B m = ( j ) m J m ( k 1 a ) H m ( 2 ) ( k 1 a ) J m ( k 1 a ) H m ( 2 ) ( k 1 a ) n 2 n 1 H m ( 2 ) ( k 1 a ) J m ( k 2 a ) H m ( 2 ) ( k 1 a ) J m ( k 2 a ) ,
Δ U A = 0 2 π 1 2 R e [ E 1 x H 1 θ * ] R d θ = k 1 | E o | 2 2 μ 0 ω 4 k 1 ( R e [ m j m A m ] + m | A m | 2 ) ,
Δ U S = 0 2 π 1 2 R e [ E s x H s θ * ] R d θ = k 1 | E o | 2 2 μ 0 ω 4 k 1 m | A m | 2 .
Δ U = Δ U A + Δ U S = k 1 | E o | 2 2 μ 0 ω 4 k 1 R e [ m j m A m ] .
U = 1 2 R e [ E 1 x H 1 y * ] = k 1 | E o | 2 2 μ o ω ,
σ H = Δ U U = 4 k 1 R e [ m = j m A m ] .
Δ P / P = ( Δ z / b 2 ) σ H ,
α H = Δ P / P Δ z = σ H b 2 = 4 k 1 b 2 R e [ m = j m A m ] .
H i x = H o e j k 1 z = H o e j k 1 r cos θ
H s x = H o m = A m H m ( 2 ) ( k 1 r ) e j m θ ,
A m = ( j ) m J m ( k 1 a ) J m ( k 2 a ) n 2 n 1 J m ( k 1 a ) J m ( k 2 a ) H m ( 2 ) ( k 1 a ) J m ( k 2 a ) n 2 n 1 H m ( 2 ) ( k 1 a ) J m ( k 2 a ) .
A m ( π a / λ ) 2 .
α A π a 2 b 2 λ
α S ( π a 2 ) 2 b 2 λ 3 ,

Metrics