Abstract

The choice of an optimal wavelength for soft x-ray holography is discussed, based on a description of scattering by biological structures within an aqueous environment. We conclude that wavelengths slightly longer than the 43.7-Å carbon K-edge provide a good trade off between minimizing the necessary source power and the dose absorbed by the sample and maximizing the penetrability of the x-rays through wet samples. This differs from the previous notion that wavelengths within the water window (between 23.2 Å and 43.7 Å) would be the best for holography. The problem of motion resulting from the absorption of x rays during a short exposure is described. The possibility of using ultrashort exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculations on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For recent reviews see D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds., X-Ray Microscopy II, (Springer-Verlag, New York, 1988), and the references therein.
  2. Discussions of x-ray holography began with A. Baez, “A Study in Diffraction Microscopy with Special Reference to X-Rays,” J. Opt. Soc. Am. 42, 756–762 (1952).
    [Crossref]
  3. D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985).
    [Crossref] [PubMed]
  4. D. L. Matthews, R. R. Freeman, Eds., “The Generation of Coherent XUV and Soft X-Ray Radiation,” J. Opt. Soc. Am. B.4, 530 (1987).
    [Crossref]
  5. M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
    [Crossref] [PubMed]
  6. J. E. Trebes et al., “Demonstration of X-ray Holography with an X-Ray Laser,” Science 238, 517–519 (1987).
    [Crossref] [PubMed]
  7. J. C. Solem, G. C. Baldwin, “Microholography of Living Organisms,” Science, 218, 229–235 (1982).
    [Crossref] [PubMed]
  8. J. C. Solem, High-Intensity X-ray Holography: An Approach to High-Resolution Snapshot Imaging of Biological Specimens, Los Alamos National Laboratory Report LA-9508-MS (1982).
  9. J. C. Solem, G. F. Chapline, “X-Ray Biomicroholography,” Opt. Eng. 23, 193–203 (1984).
    [Crossref]
  10. J. C. Solem, “Imaging Biological Specimens with High-Intensity Soft X Rays,” J. Opt. Soc. Am. B. 3, 1551–1565 (1986).
    [Crossref]
  11. M. Howells, “Fundamental Limits in X-Ray Holography,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 263.
  12. C. Jacobsen, “X-Ray Holographic Microscopy of Biological Systems Using an Undulator,” Ph.D. Dissertation, SUNY-Stony Brook, New York, (1988).
  13. C. Jacobsen, Lawrence Berkeley Laboratory; private communication.
  14. H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981).
  15. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).
  16. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
    [Crossref]
  17. A. A. Zamyatnin, “Amino Acid, Peptide, and Protein Volume in Solution,” Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984).
    [Crossref] [PubMed]
  18. J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).
  19. A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
    [Crossref] [PubMed]
  20. R. W. James, The Optical Principles of The Diffraction of X-rays (Bell, London, 1967) p. 149.X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 228.
  21. T. W. Barbee, “Use of Multilayer Diffraction Gratings in the Determination of X-Ray, Soft X-Ray and VUV Elemental Scattering Cross-sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 169–176 (1988).
  22. N. K. Del Grande, K. G. Tirsell “Program to Obtain Reliable Photoabsorption Cross Sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 6–10 (1988).
  23. E. Gullikson, J. Davis, Lawrence Berkeley Laboratory; private communication.
  24. R. Dandliker, K. Weiss, “Reconstruction of the Three-Dimensional Refractive Index from Scattered Waves,” Opt. Commun. 1, 323–328 (1970).
    [Crossref]
  25. E. Wolf, “Three-Dimensional Structure Determination of Semi-Transparent Objects from Holographic Data,” Opt. Commun. 1, 153–156 (1970).
    [Crossref]
  26. M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988).
    [Crossref]
  27. D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
    [Crossref] [PubMed]
  28. G. Schmahl, D. Rudolph, P. Guttmann, “Phase Contrast X-Ray Microscopy—Experiments at the BESSY Storage Ring,” in
  29. G. Schmahl, “Amplitude and Phase Contrast X-Ray Microscopy,” in Short Wavelength Coherent Radiation: Generation and Applications, Eds. R. Falcone, J. Kirz, J. Opt. Soc. Am. B 6, 309 (1989).
  30. A. Mozumder, “Charged Particle Tracks and their Structure,” in Advances in Radiation Chemistry, M. Burton, J. L. Magee, Eds. (Wiley Interscience, New York, 1969) p. 1–102.
  31. C. J. Keane et al., “Soft X-Ray Laser Source Development and Applications Experiments at Lawrence Livermore National Laboratory,” J. Phys. B. (in press) (1989).
    [Crossref]
  32. R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

1988 (1)

M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988).
[Crossref]

1987 (2)

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

J. E. Trebes et al., “Demonstration of X-ray Holography with an X-Ray Laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

1986 (1)

J. C. Solem, “Imaging Biological Specimens with High-Intensity Soft X Rays,” J. Opt. Soc. Am. B. 3, 1551–1565 (1986).
[Crossref]

1985 (1)

D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985).
[Crossref] [PubMed]

1984 (2)

A. A. Zamyatnin, “Amino Acid, Peptide, and Protein Volume in Solution,” Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984).
[Crossref] [PubMed]

J. C. Solem, G. F. Chapline, “X-Ray Biomicroholography,” Opt. Eng. 23, 193–203 (1984).
[Crossref]

1982 (2)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

J. C. Solem, G. C. Baldwin, “Microholography of Living Organisms,” Science, 218, 229–235 (1982).
[Crossref] [PubMed]

1977 (1)

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

1976 (1)

A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
[Crossref] [PubMed]

1970 (2)

R. Dandliker, K. Weiss, “Reconstruction of the Three-Dimensional Refractive Index from Scattered Waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

E. Wolf, “Three-Dimensional Structure Determination of Semi-Transparent Objects from Holographic Data,” Opt. Commun. 1, 153–156 (1970).
[Crossref]

1952 (1)

Attwood, D.

D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985).
[Crossref] [PubMed]

Baez, A.

Baldwin, G. C.

J. C. Solem, G. C. Baldwin, “Microholography of Living Organisms,” Science, 218, 229–235 (1982).
[Crossref] [PubMed]

Barbee, T. W.

T. W. Barbee, “Use of Multilayer Diffraction Gratings in the Determination of X-Ray, Soft X-Ray and VUV Elemental Scattering Cross-sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 169–176 (1988).

Carlson, R. D.

A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
[Crossref] [PubMed]

Chapline, G. F.

J. C. Solem, G. F. Chapline, “X-Ray Biomicroholography,” Opt. Eng. 23, 193–203 (1984).
[Crossref]

Dandliker, R.

R. Dandliker, K. Weiss, “Reconstruction of the Three-Dimensional Refractive Index from Scattered Waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

Davis, J.

E. Gullikson, J. Davis, Lawrence Berkeley Laboratory; private communication.

Del Grande, N. K.

N. K. Del Grande, K. G. Tirsell “Program to Obtain Reliable Photoabsorption Cross Sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 6–10 (1988).

Eder, D. C.

R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

Feder, R.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

Fujikawa, R. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

Gullikson, E.

E. Gullikson, J. Davis, Lawrence Berkeley Laboratory; private communication.

Guttmann, P.

G. Schmahl, D. Rudolph, P. Guttmann, “Phase Contrast X-Ray Microscopy—Experiments at the BESSY Storage Ring,” in

Hagelstein, P. L.

M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988).
[Crossref]

R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

Halbach, K.

D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985).
[Crossref] [PubMed]

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

Hopkins, N. H.

J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).

Howells, M.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

M. Howells, “Fundamental Limits in X-Ray Holography,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 263.

Jacobsen, C.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

C. Jacobsen, “X-Ray Holographic Microscopy of Biological Systems Using an Undulator,” Ph.D. Dissertation, SUNY-Stony Brook, New York, (1988).

C. Jacobsen, Lawrence Berkeley Laboratory; private communication.

James, R. W.

R. W. James, The Optical Principles of The Diffraction of X-rays (Bell, London, 1967) p. 149.X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 228.

Keane, C. J.

C. J. Keane et al., “Soft X-Ray Laser Source Development and Applications Experiments at Lawrence Livermore National Laboratory,” J. Phys. B. (in press) (1989).
[Crossref]

Kerker, M.

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).

Kim, D. M.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

Kim, K.-J.

D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985).
[Crossref] [PubMed]

Kirz, J.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

Lee, P.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

London, R. A.

M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988).
[Crossref]

R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

Maxon, M. S.

R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

McQuaid, K.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

Mozumder, A.

A. Mozumder, “Charged Particle Tracks and their Structure,” in Advances in Radiation Chemistry, M. Burton, J. L. Magee, Eds. (Wiley Interscience, New York, 1969) p. 1–102.

Olins, A. L.

A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
[Crossref] [PubMed]

Olins, D. E.

A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
[Crossref] [PubMed]

Roberts, J. W.

J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).

Rosen, M. D.

M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988).
[Crossref]

R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

Rothman, S.

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

Rudolph, D.

G. Schmahl, D. Rudolph, P. Guttmann, “Phase Contrast X-Ray Microscopy—Experiments at the BESSY Storage Ring,” in

Sayre, D.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

Schmahl, G.

G. Schmahl, D. Rudolph, P. Guttmann, “Phase Contrast X-Ray Microscopy—Experiments at the BESSY Storage Ring,” in

G. Schmahl, “Amplitude and Phase Contrast X-Ray Microscopy,” in Short Wavelength Coherent Radiation: Generation and Applications, Eds. R. Falcone, J. Kirz, J. Opt. Soc. Am. B 6, 309 (1989).

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

Solem, J. C.

J. C. Solem, “Imaging Biological Specimens with High-Intensity Soft X Rays,” J. Opt. Soc. Am. B. 3, 1551–1565 (1986).
[Crossref]

J. C. Solem, G. F. Chapline, “X-Ray Biomicroholography,” Opt. Eng. 23, 193–203 (1984).
[Crossref]

J. C. Solem, G. C. Baldwin, “Microholography of Living Organisms,” Science, 218, 229–235 (1982).
[Crossref] [PubMed]

J. C. Solem, High-Intensity X-ray Holography: An Approach to High-Resolution Snapshot Imaging of Biological Specimens, Los Alamos National Laboratory Report LA-9508-MS (1982).

Spiller, E.

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

Steitz, J. A.

J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

Tirsell, K. G.

N. K. Del Grande, K. G. Tirsell “Program to Obtain Reliable Photoabsorption Cross Sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 6–10 (1988).

Trebes, J. E.

J. E. Trebes et al., “Demonstration of X-ray Holography with an X-Ray Laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981).

Watson, J. P.

J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).

Weiner, A. M.

J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).

Weiss, K.

R. Dandliker, K. Weiss, “Reconstruction of the Three-Dimensional Refractive Index from Scattered Waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

Wolf, E.

E. Wolf, “Three-Dimensional Structure Determination of Semi-Transparent Objects from Holographic Data,” Opt. Commun. 1, 153–156 (1970).
[Crossref]

Wright, E. B.

A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
[Crossref] [PubMed]

Zamyatnin, A. A.

A. A. Zamyatnin, “Amino Acid, Peptide, and Protein Volume in Solution,” Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984).
[Crossref] [PubMed]

Annu. Rev. Biophys. Bioeng. (1)

A. A. Zamyatnin, “Amino Acid, Peptide, and Protein Volume in Solution,” Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984).
[Crossref] [PubMed]

At. Data Nucl. Data Tables (1)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B. (1)

J. C. Solem, “Imaging Biological Specimens with High-Intensity Soft X Rays,” J. Opt. Soc. Am. B. 3, 1551–1565 (1986).
[Crossref]

Nucleic Acids Res. (1)

A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976).
[Crossref] [PubMed]

Opt. Commun. (2)

R. Dandliker, K. Weiss, “Reconstruction of the Three-Dimensional Refractive Index from Scattered Waves,” Opt. Commun. 1, 323–328 (1970).
[Crossref]

E. Wolf, “Three-Dimensional Structure Determination of Semi-Transparent Objects from Holographic Data,” Opt. Commun. 1, 153–156 (1970).
[Crossref]

Opt. Eng. (1)

J. C. Solem, G. F. Chapline, “X-Ray Biomicroholography,” Opt. Eng. 23, 193–203 (1984).
[Crossref]

Phys. Fluids (1)

M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988).
[Crossref]

Science (5)

D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977).
[Crossref] [PubMed]

D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985).
[Crossref] [PubMed]

M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987).
[Crossref] [PubMed]

J. E. Trebes et al., “Demonstration of X-ray Holography with an X-Ray Laser,” Science 238, 517–519 (1987).
[Crossref] [PubMed]

J. C. Solem, G. C. Baldwin, “Microholography of Living Organisms,” Science, 218, 229–235 (1982).
[Crossref] [PubMed]

Other (18)

J. C. Solem, High-Intensity X-ray Holography: An Approach to High-Resolution Snapshot Imaging of Biological Specimens, Los Alamos National Laboratory Report LA-9508-MS (1982).

D. L. Matthews, R. R. Freeman, Eds., “The Generation of Coherent XUV and Soft X-Ray Radiation,” J. Opt. Soc. Am. B.4, 530 (1987).
[Crossref]

For recent reviews see D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds., X-Ray Microscopy II, (Springer-Verlag, New York, 1988), and the references therein.

R. W. James, The Optical Principles of The Diffraction of X-rays (Bell, London, 1967) p. 149.X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 228.

T. W. Barbee, “Use of Multilayer Diffraction Gratings in the Determination of X-Ray, Soft X-Ray and VUV Elemental Scattering Cross-sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 169–176 (1988).

N. K. Del Grande, K. G. Tirsell “Program to Obtain Reliable Photoabsorption Cross Sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 6–10 (1988).

E. Gullikson, J. Davis, Lawrence Berkeley Laboratory; private communication.

M. Howells, “Fundamental Limits in X-Ray Holography,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 263.

C. Jacobsen, “X-Ray Holographic Microscopy of Biological Systems Using an Undulator,” Ph.D. Dissertation, SUNY-Stony Brook, New York, (1988).

C. Jacobsen, Lawrence Berkeley Laboratory; private communication.

H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981).

M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).

G. Schmahl, D. Rudolph, P. Guttmann, “Phase Contrast X-Ray Microscopy—Experiments at the BESSY Storage Ring,” in

G. Schmahl, “Amplitude and Phase Contrast X-Ray Microscopy,” in Short Wavelength Coherent Radiation: Generation and Applications, Eds. R. Falcone, J. Kirz, J. Opt. Soc. Am. B 6, 309 (1989).

A. Mozumder, “Charged Particle Tracks and their Structure,” in Advances in Radiation Chemistry, M. Burton, J. L. Magee, Eds. (Wiley Interscience, New York, 1969) p. 1–102.

C. J. Keane et al., “Soft X-Ray Laser Source Development and Applications Experiments at Lawrence Livermore National Laboratory,” J. Phys. B. (in press) (1989).
[Crossref]

R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Smallest resolvable features are approximated as spheres illustrating the idealized model for scattering by a protein sample in water.

Fig. 2
Fig. 2

Real and imaginary parts of the optical constants are shown vs wavelength for protein and water.

Fig. 3
Fig. 3

Scattering cross section for a 150-Å radius sphere of protein is shown vs wavelength for vacuum and water surroundings.

Fig. 4
Fig. 4

The e-folding penetration lengths for soft x rays in water and protein are plotted against wavelength.

Fig. 5
Fig. 5

Fluence for a 150-Å protein sphere in water to scatter 103 photons has its minimum near the carbon K-edge at 43.7 Å.

Fig. 6
Fig. 6

Dose absorbed in scattering 103 photons is minimized at a wavelength just above the carbon K-edge.

Tables (2)

Tables Icon

Table I Properties of Biological Materials

Tables Icon

Table II Maximum Exposure Times

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

F = N s h c / ( λ σ s ) ,
D = F κ a ,
σ s = 8 π 3 r 4 λ 2 | Δ n | 2 .
n 1 , 2 = 1 δ 1 , 2 i β 1 , 2 ,
σ s = 8 π 3 r 4 λ 2 [ ( δ 1 δ 2 ) 2 + ( β 1 β 2 ) 2 ] .
[ δ β ] = ( r e 2 π ) λ 2 i N i [ f 1 i f 2 i ] ,
L = 1 / ( κ a ρ ) = 1 / [ 2 r e λ i N i f 2 i ] .
T 0 . 25 e V D 10 11 erg g 1 2900 K D 10 11 erg g 1 ,
r = r 0 + [ f ( γ ) c 1 c H ] 1 / 2 t 3 / 2 ,
t = r 0 [ f ( γ ) c 1 c D ] 1 / 2 .

Metrics