Abstract

Fourteen university, government, and industrial laboratories prepared a total of twenty pairs of single-layer titanium dioxide films. Several laboratories analyzed the coatings to determine their optical properties, thickness, surface roughness, absorption, wetting contact angle, and crystalline structure. Wide variations were found in the optical and physical properties of the films, even among films produced by nominally the same deposition techniques.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. The acronyms used in this paper may vary from those used elsewhere.
  2. P. J. Martin, “Review: Ion-based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–25 (1986).
    [CrossRef]
  3. A. Matthews, “Developments in Ionization Assisted Processes,” J. Vac. Sci. Technol. A 3, 2354–2363 (1985).
    [CrossRef]
  4. A. Kalb, “Neutral Ion Beam Sputter Deposition of High-Quality Optical Films,” Opt. News 12, 13–17 (August1986).
    [CrossRef]
  5. H. K Pulker, M. Bühler, R. Hora, “Optical Films Deposited by a Reactive Ion Plating Process,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 110–114 (1987).
  6. R. P. Howson, K. Suzuki, C. A. Bishop, M. I. Ridge, “Reactive Ion Plating of TiO2,” Vacuum 34, 291–294 (1984).
    [CrossRef]
  7. H. Schroeder, “Oxide Layers Deposited from Organic Solutions,” in Physics of Thin Films, Vol. 5, G. Hass, R. E. Thun, Eds., (Academic, New York, 1969), pp. 87–141.
  8. J. P. Lehan, Optical Sciences Center, University of Arizona, private communication.
  9. M. Kaspar, R. Pfefferkorn, “Intermittent Ion Assisted Deposition of Silica and Titania,” in Technical Digest of Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), paper ThB12.
  10. H. K. Pulker, G. Paesold, E. Ritter, “Refractive Indices of TiO2 Films Produced by Reactive Evaporation of Various Titanium–Oxygen Phases,” Appl. Opt. 15, 2986–2991 (1976).
    [CrossRef] [PubMed]
  11. K. H. Guenther, “Microstructure of Vapor-Deposited Optical Coatings,” Appl. Opt. 23, 3806–3816 (1984).
    [CrossRef] [PubMed]
  12. K. H. Guenther, H. L. Gruber, H. K. Pulker, “Morphology and Light Scattering of Dielectric Multilayer Systems,” Thin Solid Films 34, 363–367 (1976).
    [CrossRef]
  13. Karl Heinz Müller, “Monte Carlo Calculation for Structural Modifications in Ion-Assisted Thin Film Deposition Due to Thermal Spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986); “Model for Ion-Assisted Thin-Film Densification,” J. Appl. Phys. 59, 2803–2807 (1986); “Modelling Ion-Assisted Deposition of CeO2 Films,” Appl. Phys. A 40, 209–213 (1986).
    [CrossRef]
  14. Karl-Heins Müller, “Ion-Beam-Induced Epitaxial Vapor-Phase Growth: A Molecular-Dynamics Study,” Phys. Rev. B 35, 7906–7913 (1987).
    [CrossRef]
  15. W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” in Proc. Soc. Photo-Opt. Instrum. Eng., R. I. Seddon, Ed., 325, 105–116 (1982); W. T. Pawlewicz, D. D. Hays, P. M. Martin, “High-Band-Gap Optical Coatings for 0.25 and 1.06 Micron Fusion Lasers,” Thin Solid Films 73, 169–175 (1980).
    [CrossRef]
  16. D. P. Arndt et al., “Multiple Determination of the Optical Constants of Thin-Film Coating Materials,” Appl. Opt. 23, 3571–3596 (1984).
    [CrossRef] [PubMed]
  17. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  18. J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
    [CrossRef]
  19. E. Pelletier, P. Roche, B. Vidal, “Determination Automatique des Constantes Optiques et de l’Epaisseur de Couches Minces: Application aux Couches Dielectriques,” Nouv. Rev. Opt. 7, 353–362 (1976).
    [CrossRef]
  20. The first Rc in Eq. (4) is the reflectance from the air side, while the second Rc is the reflectance from the inside. However, if k for the film is small, these reflectances are essentially equal.
  21. A. S. Valeev, “Determination of the Optical Constants of Weakly Absorbing Thin Films,” Opt. Spectrosc. USSR 15, 269–274 (1963).
  22. A. S. Valeev, “On a Technique for the Determination of the Optical Constants of Thin Weakly Absorbing Layers,” Opt. Spectrosc. USSR 18, 498–500 (1965).
  23. A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36, 1627–1638 (1964).
    [CrossRef]
  24. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333–1344 (1981).
    [CrossRef] [PubMed]
  25. A. Bubenzer, P. Koidl, “Exact Expressions for Calculating Thin-Film Absorption Coefficients from Laser Calorimetric Data,” Appl. Opt. 23, 2886–2891 (1984).
    [CrossRef] [PubMed]
  26. Thin film program written by Angela Piegari at ENEA, Rome, Italy, and based on the methods for determining n and k summarized in the paper by G. Emiliani, E. Masetti, A. Piegari, “Thin film Refractive Index Determination by Different Techniques,” Proc. Soc. Photo-Opt Instrum. Eng., R. Jacobsson, Ed., 652, 153–157 (1986).
  27. J. M. Bennett, J. H. Dancy, “Stylus Profiling Instrument for Measuring Statistical Properties of Smooth Optical Surfaces,” Appl. Opt. 20, 1785–1802 (1981).
    [CrossRef] [PubMed]
  28. J. M. Elson, J. M. Bennett, “Relation Between the Angular Dependence of Scattering and the Statistical Properties of Optical Surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).
    [CrossRef]
  29. M. J. Jaycock, G. D. Parfitt, Chemistry of Interfaces (Wiley, New York, 1981), pp. 11–21; data are taken from F. M. Fowkes, “Attractive Forces at Interfaces,” Ind. Eng. Chem. 56, 40–52 (1964).
    [CrossRef]
  30. D. M. Friedrich, G. J. Exarhos, “Raman Microprobe of Laser-Induced Surface Damage Regions in TiO2 Coatings,” in Laser Induced Damage in Optical Materials: 1985, NBS Special Publication 746 (National Bureau of Standards, Washington, D.C., 1988), pp. 374–382.
    [CrossRef]
  31. L. S. Hsu, R. Solanki, G. J. Collins, C. Y. She, “Raman Study of Structural Transformations of Titania Coatings Induced by Laser Annealing,” Appl. Phys. Lett. 45, 1065–1067 (1984).
    [CrossRef]
  32. C. Hickey, C. Amra, E. Pelletier, “Scattering Study of Single Layer Titania Films,” in Technical Digest, Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988).

1987 (2)

H. K Pulker, M. Bühler, R. Hora, “Optical Films Deposited by a Reactive Ion Plating Process,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 110–114 (1987).

Karl-Heins Müller, “Ion-Beam-Induced Epitaxial Vapor-Phase Growth: A Molecular-Dynamics Study,” Phys. Rev. B 35, 7906–7913 (1987).
[CrossRef]

1986 (3)

P. J. Martin, “Review: Ion-based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

A. Kalb, “Neutral Ion Beam Sputter Deposition of High-Quality Optical Films,” Opt. News 12, 13–17 (August1986).
[CrossRef]

Karl Heinz Müller, “Monte Carlo Calculation for Structural Modifications in Ion-Assisted Thin Film Deposition Due to Thermal Spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986); “Model for Ion-Assisted Thin-Film Densification,” J. Appl. Phys. 59, 2803–2807 (1986); “Modelling Ion-Assisted Deposition of CeO2 Films,” Appl. Phys. A 40, 209–213 (1986).
[CrossRef]

1985 (1)

A. Matthews, “Developments in Ionization Assisted Processes,” J. Vac. Sci. Technol. A 3, 2354–2363 (1985).
[CrossRef]

1984 (5)

1983 (1)

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

1982 (1)

1981 (2)

1979 (1)

1976 (3)

E. Pelletier, P. Roche, B. Vidal, “Determination Automatique des Constantes Optiques et de l’Epaisseur de Couches Minces: Application aux Couches Dielectriques,” Nouv. Rev. Opt. 7, 353–362 (1976).
[CrossRef]

K. H. Guenther, H. L. Gruber, H. K. Pulker, “Morphology and Light Scattering of Dielectric Multilayer Systems,” Thin Solid Films 34, 363–367 (1976).
[CrossRef]

H. K. Pulker, G. Paesold, E. Ritter, “Refractive Indices of TiO2 Films Produced by Reactive Evaporation of Various Titanium–Oxygen Phases,” Appl. Opt. 15, 2986–2991 (1976).
[CrossRef] [PubMed]

1965 (1)

A. S. Valeev, “On a Technique for the Determination of the Optical Constants of Thin Weakly Absorbing Layers,” Opt. Spectrosc. USSR 18, 498–500 (1965).

1964 (1)

A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36, 1627–1638 (1964).
[CrossRef]

1963 (1)

A. S. Valeev, “Determination of the Optical Constants of Weakly Absorbing Thin Films,” Opt. Spectrosc. USSR 15, 269–274 (1963).

Amer, N. M.

Amra, C.

C. Hickey, C. Amra, E. Pelletier, “Scattering Study of Single Layer Titania Films,” in Technical Digest, Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988).

Arndt, D. P.

Bennett, J. M.

Bishop, C. A.

R. P. Howson, K. Suzuki, C. A. Bishop, M. I. Ridge, “Reactive Ion Plating of TiO2,” Vacuum 34, 291–294 (1984).
[CrossRef]

Boccara, A. C.

Borgogno, J. P.

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

Bubenzer, A.

Bühler, M.

H. K Pulker, M. Bühler, R. Hora, “Optical Films Deposited by a Reactive Ion Plating Process,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 110–114 (1987).

Collins, G. J.

L. S. Hsu, R. Solanki, G. J. Collins, C. Y. She, “Raman Study of Structural Transformations of Titania Coatings Induced by Laser Annealing,” Appl. Phys. Lett. 45, 1065–1067 (1984).
[CrossRef]

Dancy, J. H.

Elson, J. M.

Emiliani, G.

Thin film program written by Angela Piegari at ENEA, Rome, Italy, and based on the methods for determining n and k summarized in the paper by G. Emiliani, E. Masetti, A. Piegari, “Thin film Refractive Index Determination by Different Techniques,” Proc. Soc. Photo-Opt Instrum. Eng., R. Jacobsson, Ed., 652, 153–157 (1986).

Exarhos, G. J.

D. M. Friedrich, G. J. Exarhos, “Raman Microprobe of Laser-Induced Surface Damage Regions in TiO2 Coatings,” in Laser Induced Damage in Optical Materials: 1985, NBS Special Publication 746 (National Bureau of Standards, Washington, D.C., 1988), pp. 374–382.
[CrossRef]

Fournier, D.

Friedrich, D. M.

D. M. Friedrich, G. J. Exarhos, “Raman Microprobe of Laser-Induced Surface Damage Regions in TiO2 Coatings,” in Laser Induced Damage in Optical Materials: 1985, NBS Special Publication 746 (National Bureau of Standards, Washington, D.C., 1988), pp. 374–382.
[CrossRef]

Golay, M. J. E.

A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36, 1627–1638 (1964).
[CrossRef]

Gruber, H. L.

K. H. Guenther, H. L. Gruber, H. K. Pulker, “Morphology and Light Scattering of Dielectric Multilayer Systems,” Thin Solid Films 34, 363–367 (1976).
[CrossRef]

Guenther, K. H.

K. H. Guenther, “Microstructure of Vapor-Deposited Optical Coatings,” Appl. Opt. 23, 3806–3816 (1984).
[CrossRef] [PubMed]

K. H. Guenther, H. L. Gruber, H. K. Pulker, “Morphology and Light Scattering of Dielectric Multilayer Systems,” Thin Solid Films 34, 363–367 (1976).
[CrossRef]

Hays, D. D.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” in Proc. Soc. Photo-Opt. Instrum. Eng., R. I. Seddon, Ed., 325, 105–116 (1982); W. T. Pawlewicz, D. D. Hays, P. M. Martin, “High-Band-Gap Optical Coatings for 0.25 and 1.06 Micron Fusion Lasers,” Thin Solid Films 73, 169–175 (1980).
[CrossRef]

Hickey, C.

C. Hickey, C. Amra, E. Pelletier, “Scattering Study of Single Layer Titania Films,” in Technical Digest, Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988).

Hora, R.

H. K Pulker, M. Bühler, R. Hora, “Optical Films Deposited by a Reactive Ion Plating Process,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 110–114 (1987).

Howson, R. P.

R. P. Howson, K. Suzuki, C. A. Bishop, M. I. Ridge, “Reactive Ion Plating of TiO2,” Vacuum 34, 291–294 (1984).
[CrossRef]

Hsu, L. S.

L. S. Hsu, R. Solanki, G. J. Collins, C. Y. She, “Raman Study of Structural Transformations of Titania Coatings Induced by Laser Annealing,” Appl. Phys. Lett. 45, 1065–1067 (1984).
[CrossRef]

Jackson, W. B.

Jaycock, M. J.

M. J. Jaycock, G. D. Parfitt, Chemistry of Interfaces (Wiley, New York, 1981), pp. 11–21; data are taken from F. M. Fowkes, “Attractive Forces at Interfaces,” Ind. Eng. Chem. 56, 40–52 (1964).
[CrossRef]

Kalb, A.

A. Kalb, “Neutral Ion Beam Sputter Deposition of High-Quality Optical Films,” Opt. News 12, 13–17 (August1986).
[CrossRef]

Kaspar, M.

M. Kaspar, R. Pfefferkorn, “Intermittent Ion Assisted Deposition of Silica and Titania,” in Technical Digest of Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), paper ThB12.

Koidl, P.

Lazarides, B.

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

Lehan, J. P.

J. P. Lehan, Optical Sciences Center, University of Arizona, private communication.

Mann, I. B.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” in Proc. Soc. Photo-Opt. Instrum. Eng., R. I. Seddon, Ed., 325, 105–116 (1982); W. T. Pawlewicz, D. D. Hays, P. M. Martin, “High-Band-Gap Optical Coatings for 0.25 and 1.06 Micron Fusion Lasers,” Thin Solid Films 73, 169–175 (1980).
[CrossRef]

Martin, P. J.

P. J. Martin, “Review: Ion-based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

Martin, P. M.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” in Proc. Soc. Photo-Opt. Instrum. Eng., R. I. Seddon, Ed., 325, 105–116 (1982); W. T. Pawlewicz, D. D. Hays, P. M. Martin, “High-Band-Gap Optical Coatings for 0.25 and 1.06 Micron Fusion Lasers,” Thin Solid Films 73, 169–175 (1980).
[CrossRef]

Masetti, E.

Thin film program written by Angela Piegari at ENEA, Rome, Italy, and based on the methods for determining n and k summarized in the paper by G. Emiliani, E. Masetti, A. Piegari, “Thin film Refractive Index Determination by Different Techniques,” Proc. Soc. Photo-Opt Instrum. Eng., R. Jacobsson, Ed., 652, 153–157 (1986).

Matthews, A.

A. Matthews, “Developments in Ionization Assisted Processes,” J. Vac. Sci. Technol. A 3, 2354–2363 (1985).
[CrossRef]

Müller, Karl Heinz

Karl Heinz Müller, “Monte Carlo Calculation for Structural Modifications in Ion-Assisted Thin Film Deposition Due to Thermal Spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986); “Model for Ion-Assisted Thin-Film Densification,” J. Appl. Phys. 59, 2803–2807 (1986); “Modelling Ion-Assisted Deposition of CeO2 Films,” Appl. Phys. A 40, 209–213 (1986).
[CrossRef]

Müller, Karl-Heins

Karl-Heins Müller, “Ion-Beam-Induced Epitaxial Vapor-Phase Growth: A Molecular-Dynamics Study,” Phys. Rev. B 35, 7906–7913 (1987).
[CrossRef]

Paesold, G.

Parfitt, G. D.

M. J. Jaycock, G. D. Parfitt, Chemistry of Interfaces (Wiley, New York, 1981), pp. 11–21; data are taken from F. M. Fowkes, “Attractive Forces at Interfaces,” Ind. Eng. Chem. 56, 40–52 (1964).
[CrossRef]

Pawlewicz, W. T.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” in Proc. Soc. Photo-Opt. Instrum. Eng., R. I. Seddon, Ed., 325, 105–116 (1982); W. T. Pawlewicz, D. D. Hays, P. M. Martin, “High-Band-Gap Optical Coatings for 0.25 and 1.06 Micron Fusion Lasers,” Thin Solid Films 73, 169–175 (1980).
[CrossRef]

Pelletier, E.

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

E. Pelletier, P. Roche, B. Vidal, “Determination Automatique des Constantes Optiques et de l’Epaisseur de Couches Minces: Application aux Couches Dielectriques,” Nouv. Rev. Opt. 7, 353–362 (1976).
[CrossRef]

C. Hickey, C. Amra, E. Pelletier, “Scattering Study of Single Layer Titania Films,” in Technical Digest, Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988).

Pfefferkorn, R.

M. Kaspar, R. Pfefferkorn, “Intermittent Ion Assisted Deposition of Silica and Titania,” in Technical Digest of Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), paper ThB12.

Piegari, A.

Thin film program written by Angela Piegari at ENEA, Rome, Italy, and based on the methods for determining n and k summarized in the paper by G. Emiliani, E. Masetti, A. Piegari, “Thin film Refractive Index Determination by Different Techniques,” Proc. Soc. Photo-Opt Instrum. Eng., R. Jacobsson, Ed., 652, 153–157 (1986).

Pulker, H. K

H. K Pulker, M. Bühler, R. Hora, “Optical Films Deposited by a Reactive Ion Plating Process,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 110–114 (1987).

Pulker, H. K.

H. K. Pulker, G. Paesold, E. Ritter, “Refractive Indices of TiO2 Films Produced by Reactive Evaporation of Various Titanium–Oxygen Phases,” Appl. Opt. 15, 2986–2991 (1976).
[CrossRef] [PubMed]

K. H. Guenther, H. L. Gruber, H. K. Pulker, “Morphology and Light Scattering of Dielectric Multilayer Systems,” Thin Solid Films 34, 363–367 (1976).
[CrossRef]

Ridge, M. I.

R. P. Howson, K. Suzuki, C. A. Bishop, M. I. Ridge, “Reactive Ion Plating of TiO2,” Vacuum 34, 291–294 (1984).
[CrossRef]

Ritter, E.

Roche, P.

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

E. Pelletier, P. Roche, B. Vidal, “Determination Automatique des Constantes Optiques et de l’Epaisseur de Couches Minces: Application aux Couches Dielectriques,” Nouv. Rev. Opt. 7, 353–362 (1976).
[CrossRef]

Savitzky, A.

A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36, 1627–1638 (1964).
[CrossRef]

Schroeder, H.

H. Schroeder, “Oxide Layers Deposited from Organic Solutions,” in Physics of Thin Films, Vol. 5, G. Hass, R. E. Thun, Eds., (Academic, New York, 1969), pp. 87–141.

She, C. Y.

L. S. Hsu, R. Solanki, G. J. Collins, C. Y. She, “Raman Study of Structural Transformations of Titania Coatings Induced by Laser Annealing,” Appl. Phys. Lett. 45, 1065–1067 (1984).
[CrossRef]

Solanki, R.

L. S. Hsu, R. Solanki, G. J. Collins, C. Y. She, “Raman Study of Structural Transformations of Titania Coatings Induced by Laser Annealing,” Appl. Phys. Lett. 45, 1065–1067 (1984).
[CrossRef]

Suzuki, K.

R. P. Howson, K. Suzuki, C. A. Bishop, M. I. Ridge, “Reactive Ion Plating of TiO2,” Vacuum 34, 291–294 (1984).
[CrossRef]

Valeev, A. S.

A. S. Valeev, “On a Technique for the Determination of the Optical Constants of Thin Weakly Absorbing Layers,” Opt. Spectrosc. USSR 18, 498–500 (1965).

A. S. Valeev, “Determination of the Optical Constants of Weakly Absorbing Thin Films,” Opt. Spectrosc. USSR 15, 269–274 (1963).

Vidal, B.

E. Pelletier, P. Roche, B. Vidal, “Determination Automatique des Constantes Optiques et de l’Epaisseur de Couches Minces: Application aux Couches Dielectriques,” Nouv. Rev. Opt. 7, 353–362 (1976).
[CrossRef]

Anal. Chem. (1)

A. Savitzky, M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified Least Squares Procedures,” Anal. Chem. 36, 1627–1638 (1964).
[CrossRef]

Appl. Opt. (7)

Appl. Phys. Lett. (1)

L. S. Hsu, R. Solanki, G. J. Collins, C. Y. She, “Raman Study of Structural Transformations of Titania Coatings Induced by Laser Annealing,” Appl. Phys. Lett. 45, 1065–1067 (1984).
[CrossRef]

J. Mater. Sci. (1)

P. J. Martin, “Review: Ion-based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–25 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. A (2)

A. Matthews, “Developments in Ionization Assisted Processes,” J. Vac. Sci. Technol. A 3, 2354–2363 (1985).
[CrossRef]

Karl Heinz Müller, “Monte Carlo Calculation for Structural Modifications in Ion-Assisted Thin Film Deposition Due to Thermal Spikes,” J. Vac. Sci. Technol. A 4, 184–188 (1986); “Model for Ion-Assisted Thin-Film Densification,” J. Appl. Phys. 59, 2803–2807 (1986); “Modelling Ion-Assisted Deposition of CeO2 Films,” Appl. Phys. A 40, 209–213 (1986).
[CrossRef]

Nouv. Rev. Opt. (1)

E. Pelletier, P. Roche, B. Vidal, “Determination Automatique des Constantes Optiques et de l’Epaisseur de Couches Minces: Application aux Couches Dielectriques,” Nouv. Rev. Opt. 7, 353–362 (1976).
[CrossRef]

Opt. News (1)

A. Kalb, “Neutral Ion Beam Sputter Deposition of High-Quality Optical Films,” Opt. News 12, 13–17 (August1986).
[CrossRef]

Opt. Spectrosc. USSR (1)

A. S. Valeev, “Determination of the Optical Constants of Weakly Absorbing Thin Films,” Opt. Spectrosc. USSR 15, 269–274 (1963).

Opt. Spectrosc. USSR (1)

A. S. Valeev, “On a Technique for the Determination of the Optical Constants of Thin Weakly Absorbing Layers,” Opt. Spectrosc. USSR 18, 498–500 (1965).

Phys. Rev. B (1)

Karl-Heins Müller, “Ion-Beam-Induced Epitaxial Vapor-Phase Growth: A Molecular-Dynamics Study,” Phys. Rev. B 35, 7906–7913 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

H. K Pulker, M. Bühler, R. Hora, “Optical Films Deposited by a Reactive Ion Plating Process,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 110–114 (1987).

Thin Solid Films (1)

K. H. Guenther, H. L. Gruber, H. K. Pulker, “Morphology and Light Scattering of Dielectric Multilayer Systems,” Thin Solid Films 34, 363–367 (1976).
[CrossRef]

Thin Solid Films (1)

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Vacuum (1)

R. P. Howson, K. Suzuki, C. A. Bishop, M. I. Ridge, “Reactive Ion Plating of TiO2,” Vacuum 34, 291–294 (1984).
[CrossRef]

Other (10)

H. Schroeder, “Oxide Layers Deposited from Organic Solutions,” in Physics of Thin Films, Vol. 5, G. Hass, R. E. Thun, Eds., (Academic, New York, 1969), pp. 87–141.

J. P. Lehan, Optical Sciences Center, University of Arizona, private communication.

M. Kaspar, R. Pfefferkorn, “Intermittent Ion Assisted Deposition of Silica and Titania,” in Technical Digest of Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), paper ThB12.

The first Rc in Eq. (4) is the reflectance from the air side, while the second Rc is the reflectance from the inside. However, if k for the film is small, these reflectances are essentially equal.

W. T. Pawlewicz, P. M. Martin, D. D. Hays, I. B. Mann, “Recent Developments in Reactively Sputtered Optical Thin Films,” in Proc. Soc. Photo-Opt. Instrum. Eng., R. I. Seddon, Ed., 325, 105–116 (1982); W. T. Pawlewicz, D. D. Hays, P. M. Martin, “High-Band-Gap Optical Coatings for 0.25 and 1.06 Micron Fusion Lasers,” Thin Solid Films 73, 169–175 (1980).
[CrossRef]

C. Hickey, C. Amra, E. Pelletier, “Scattering Study of Single Layer Titania Films,” in Technical Digest, Fourth Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988).

The acronyms used in this paper may vary from those used elsewhere.

M. J. Jaycock, G. D. Parfitt, Chemistry of Interfaces (Wiley, New York, 1981), pp. 11–21; data are taken from F. M. Fowkes, “Attractive Forces at Interfaces,” Ind. Eng. Chem. 56, 40–52 (1964).
[CrossRef]

D. M. Friedrich, G. J. Exarhos, “Raman Microprobe of Laser-Induced Surface Damage Regions in TiO2 Coatings,” in Laser Induced Damage in Optical Materials: 1985, NBS Special Publication 746 (National Bureau of Standards, Washington, D.C., 1988), pp. 374–382.
[CrossRef]

Thin film program written by Angela Piegari at ENEA, Rome, Italy, and based on the methods for determining n and k summarized in the paper by G. Emiliani, E. Masetti, A. Piegari, “Thin film Refractive Index Determination by Different Techniques,” Proc. Soc. Photo-Opt Instrum. Eng., R. Jacobsson, Ed., 652, 153–157 (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (23)

Fig. 1
Fig. 1

Diagrams showing the quantities used in the calculations of the optical constants of the titania films. The Ts and Rs are intensity transmittances and reflectances, respectively.

Fig. 2
Fig. 2

Derived transmittance Tc and reflectance Rc for IBSD film #120 measured by Group A.

Fig. 3
Fig. 3

Calculated refractive index versus wavelength for IBSD film #120 measured by Group A. The solid curve is the average refractive index, and upper and lower dotted curves are n0 at the air-film interface and ni at the film-substrate interface, respectively. The error bars were calculated assuming uncertainties of ± 0.003 in both Tc and Rc.

Fig. 4
Fig. 4

Calculated refractive index n (upper curve) and extinction coefficient k (lower curve) vs wavelength for IBSD film #136 measured by Group B. The vertical bars on the n curve indicate the wavelengths where the inhomogeneity was measured; the length of the bars indicates the difference n0ni. The length of the vertical bars on the k curve indicates the uncertainty in k.

Fig. 5
Fig. 5

Calculated refractive index n (upper curve) and extinction coefficient k (lower curve) vs wavelength for IBSD film #079 measured by Group B. The vertical bars have the same meanings as in Fig. 4.

Fig. 6
Fig. 6

Schematic diagram of the photothermal deflection spectroscopy apparatus.

Fig. 7
Fig. 7

Refractive index n vs extinction coefficient k for the films in Group B.

Fig. 8
Fig. 8

Histogram showing the refractive indices of all films in Group A. The mean value of n was 2.30 for the E–B films, 2.43 for the IAD films, and 2.51 for the IBSD and IP films as compared to 2.39 for all films.

Fig. 9
Fig. 9

Calculated refractive index vs wavelength of E–B deposited films measured by Group A.

Fig. 10
Fig. 10

Calculated refractive index vs wavelength for IAD films measured by Group A.

Fig. 11
Fig. 11

Calculated refractive index vs wavelength for IBSD, IP, ARE and dip coated films measured by Group A.

Fig. 12
Fig. 12

Histogram of the optical thicknesses of the films in Group A, calculated at λ = 550 nm.

Fig. 13
Fig. 13

Absorptance as measured by photothermal deflection spectroscopy vs rms roughness for selected films in Group B.

Fig. 14
Fig. 14

Measured rms roughnesses of films in Group B.

Fig. 15
Fig. 15

Surface profile (1000-μm profile length) for a typical uncoated fused silica substrate in Group B.

Fig. 16
Fig. 16

Surface profile (100-μm profile length) for IBSD film #136.

Fig. 17
Fig. 17

Surface profile (100-μm profile length) for IBSD film #122.

Fig. 18
Fig. 18

Autocovariance function for IBSD film #136.

Fig. 19
Fig. 19

Autocovariance function for IBSD film #122.

Fig. 20
Fig. 20

Power spectral density function for IBSD film #136. The vertical arrow marks the spatial frequency corresponding to the autocovariance length. The horizontal double ended arrow marks the range of spatial frequencies that produce scattering into angles between 0.4° and 90° for a wavelength of 0.633 nm at normal incidence.

Fig. 21
Fig. 21

Power spectral density function for IBSD film #122. The arrows have the same meanings as in Fig. 20.

Fig. 22
Fig. 22

Cosine of the contact angle for wetting vs rms surface roughness for the films in Group B and a bare fused silica substrate. The solid data points are for films containing anatase (see Table VII).

Fig. 23
Fig. 23

Raman microprobe spectra for IAD films #012 and #022 in Group B. Note the anatase peak in the upper curve.

Tables (7)

Tables Icon

Table I Suppliers of Titania Films

Tables Icon

Table II Coating Parameters for Titania Films

Tables Icon

Table III Measured Optical Constants of Titania Films at λ = 550 nm

Tables Icon

Table IV Cauchy Constants [Eq. (10)] for the Refractive Indices of Films in the Wavelength Range 400–1000 nm Measured by Group A; the Wavelength is in μm

Tables Icon

Table V Physical (d) and Optical (nd) Thicknesses of Titanla Films at λ = 550 nm Obtained from the Measurements of Groups A and B; all Thicknesses Are in nm

Tables Icon

Table VI Measured Roughness, Correlation Length, and Absorptance of Titania Films in Group B

Tables Icon

Table VII Roughness, Contact Angle for Wetting, and Crystalllnity of Titania Films In Group B

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

τ 0 = T 0 T r / ( 1 R 0 R r ) ,
τ c = T c T r / ( 1 R c R r ) ,
ρ 0 = R 0 + T 0 2 R r / ( 1 R 0 R r ) ,
ρ c = R c + T c 2 R r / ( 1 R c R r ) ,
R 0 + T 0 = 1 ,
T 0 2 R 0 2 = ( T 0 R 0 ) ( T 0 + R 0 ) = T 0 R 0 .
T c = β + α R c ,
R c = ( γ Q R β 2 R r ) / ( 1 R 0 R r ) ,
R 0 = R r = ( 1 n s ) 2 / ( 1 + n s ) 2 ,
n = A + B / λ 2 + C / λ 4 ,
R c = ρ c R b / ρ b ,
k = n A / 2 π m ,
A = 1 R cmin T c max .
Δ n = n ( R c min R 0 ) / ( 4 . 4 R 0 ) ,
m λ / 2 = n d ,
ϕ = ( L n 0 ) ( d n d T ) ( k d ( κ d k d + κ s k s ) ) exp ( k d z 0 ) I 0 A = ( L n 0 ) ( d n d T ) ( d T d z ) ,

Metrics