Abstract

We introduce a laminate two-layer approach to electrochromic smart windows. It incorporates two glass panes, each having a two-layer coating, laminated by a transparent adhesive solid polymer electrolyte. Each coating has a transparent conducting base layer (In2O3:Sn) and a top layer of an ion-insertion compound (based on WO3 or V2O5). The layers were made by evaporation or sputtering. Cyclic voltammetry in liquid electrolytes and spectrophotometry were used to characterize the layers. A novel electrolyte was developed: it comprised a methyl methacrylate network incorporating poly(propylene glycol) complexed with lithium perchlorate. Initial optical data are reported for laminated devices having an active electrochromic LixWO3 layer and a passive LiyV2O5 counter electrode.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. M. Lampert, “Advanced Optical Materials for Energy Efficiency and Solar Conversion,” in Physics of Non-Conventional Energy Sources and Material Science for Energy, G. Furlan et al., Eds., (World Scientific, Singapore, 1987), p. 143.
  2. C. G. Granqvist, “Spectrally Selective Coatings for Energy Efficient Windows,” in Physics of Non-Conventional Energy Sources and Material Science for Energy, G. Furlan et al., Eds. (World Scientific, Singapore, 1987), p. 217.
  3. C. G. Granqvist, “Spectrally Selective Surfaces for Heating and Cooling,” in Physics and Technology of Solar Energy, H. P. Garg et al., Eds. (Reidel, Dordrecht, The Netherlands, 1987), Vol. 2, p. 191.
    [Crossref]
  4. C. G. Granqvist, “Energy-Efficient Windows: Options with Present and Forthcoming Technology,” in Electricity: Efficient End-Use and New Generation Technologies, and Their Planning Implications, T. B. Johansson et al., Eds. (Lund U. P., Sweden, 1989), p. 89.
  5. J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Coatings for ‘Smart Windows,” Sol. Energy Mater. 12, 391–402 (1985).
    [Crossref]
  6. C. M. Lampert, C. G. Granqvist, Large Area Chromogenics: Materials and Devices for Transmission Control (International Society for Optical Engineering, Bellingham, WA, 1989), to be published.
  7. C. M. Lampert, “Electrochromic Materials and Devices for Energy Efficient Windows,” Sol. Energy Mater. 11, 1–27 (1984).
    [Crossref]
  8. C. G. Granqvist, “New Functional Window Coatings for Automotive Applications,” in Solar Optical Materials, M. G. Hutchins, Ed., (Pergamon, Oxford, 1988), p. 59.
  9. B. W. Faughnan, R. S. Crandall, Electrochromic Displays Based on WO3 (Springer-Verlag, Berlin, 1980), p. 181.
  10. G. Beni, J. L. Shay, “Ion-insertion Electrochromic Displays,” in Advances in Image Pickup and Display, B. Kazan, Ed., (Academic, New York, 1982), p. 83.
  11. W. C. Dautremont-Smith, “Transition Metal Oxide Electrochromic Materials and Displays: A Review,” Displays (Jan.1982), p. 3; Displays (Apr.1982), p. 67.
    [Crossref]
  12. S. A. Agnihotry, K. K. Saini, S. Chandra, “Physics & Technology of Thin Film Electrochromic Displays,” Indian J. Pure Appl. Phys. 24, 19–40 (1986).
  13. T. Oi, “Electrochromic Materials,” Ann. Rev. Mater. Sci. 16, 185–201 (1986).
    [Crossref]
  14. Donelly Corp., Holland, MI.
  15. S.-J. Jiang, C. G. Granqvist, “Sputtered In2O3:Sn Films: Preparation and Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 129–136 (1985).
  16. P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).
  17. G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).
  18. M. B. Armand, “Polymer Electrolytes,” Ann. Rev. Mater. Sci. 16, 245–261 (1986).
    [Crossref]
  19. S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).
  20. J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-Based Films in Contact with a Solid Li-Doped Siloxane Elastomer Electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
    [Crossref] [PubMed]
  21. F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
    [Crossref]
  22. T. S. Eriksson, C. G. Granqvist, “Infrared Optical Properties of Silicon Oxynitride Films: Experimental Data and Theoretical Interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
    [Crossref]
  23. S. K. Deb, “Some Perspectives on Electrochromic Device Research,” Proc. Soc. Photo-Opt. Instrum. Eng. 692, 19–31 (1986).
  24. T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic Devices for Transmissive and Reflective Light Control,” Sol. Energy Mater. 16, 27–38 (1987).
    [Crossref]
  25. J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Tungsten Oxide Films for Energy Efficient Windows,” Sol. Energy Mater. 11, 29–34 (1984).
    [Crossref]
  26. T. Yoshino, N. Baba, Kouda, “Electrochromic Properties of V2O5 Thin Films Colloid-Chemically Deposited onto ITO Glasses,” Jpn. J. Appl. Phys. 26, 782–783 (1987).
    [Crossref]
  27. S. Kobayashi, T. Takemura, F. Kaneko, “Dependence of Absorption in Electrochromic V2O5 Thin Films on Crystallinity,” Jpn. J. Appl. Phys. 26, L 1274–L 1276 (1987).
  28. J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
    [Crossref]
  29. S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).
  30. J. R. MacCallum, C. A. Vincent, Eds., Polymer Electrolyte Reviews-1 (Elsevier, London, 1987).
  31. M. Watanable, N. Ogata, “Ionic Conductivity of Polypropylene Oxide) Electrolytes,” in Ref. 30, p. 39.
  32. H. Cheradame, J. F. LeNest, “Ionically Conducting Polyether Networks,” in Ref. 30, p. 103.
  33. J. R. Stevens, W. Wixwat, to be published.
  34. J. Nagai, T. Kamimori, M. Mizuhashi, “Transmissive Electrochromic Device,” Sol. Energy Mater. 14, 175–184 (1986).
    [Crossref]
  35. S. Hub, A. Tranchant, R. Messina, “X-Ray Investigations on Electroformed LixV2O5 Bronzes,” Electrochim. Acta 33, 997– 1002 (1988).
    [Crossref]
  36. J. L. Lagzdons, G. E. Bajars, A. R. Lusis, “Modelling of the Solid State Electrochromic System WO3/HSbO3 • 2H2O/ Ni(OH)2,” Phys. Status Sol. A 84, K 197–K 200 (1984).
    [Crossref]

1988 (4)

F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
[Crossref]

J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
[Crossref]

S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).

S. Hub, A. Tranchant, R. Messina, “X-Ray Investigations on Electroformed LixV2O5 Bronzes,” Electrochim. Acta 33, 997– 1002 (1988).
[Crossref]

1987 (6)

S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).

J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-Based Films in Contact with a Solid Li-Doped Siloxane Elastomer Electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
[Crossref] [PubMed]

T. Yoshino, N. Baba, Kouda, “Electrochromic Properties of V2O5 Thin Films Colloid-Chemically Deposited onto ITO Glasses,” Jpn. J. Appl. Phys. 26, 782–783 (1987).
[Crossref]

S. Kobayashi, T. Takemura, F. Kaneko, “Dependence of Absorption in Electrochromic V2O5 Thin Films on Crystallinity,” Jpn. J. Appl. Phys. 26, L 1274–L 1276 (1987).

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic Devices for Transmissive and Reflective Light Control,” Sol. Energy Mater. 16, 27–38 (1987).
[Crossref]

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

1986 (6)

M. B. Armand, “Polymer Electrolytes,” Ann. Rev. Mater. Sci. 16, 245–261 (1986).
[Crossref]

S. A. Agnihotry, K. K. Saini, S. Chandra, “Physics & Technology of Thin Film Electrochromic Displays,” Indian J. Pure Appl. Phys. 24, 19–40 (1986).

T. Oi, “Electrochromic Materials,” Ann. Rev. Mater. Sci. 16, 185–201 (1986).
[Crossref]

T. S. Eriksson, C. G. Granqvist, “Infrared Optical Properties of Silicon Oxynitride Films: Experimental Data and Theoretical Interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[Crossref]

S. K. Deb, “Some Perspectives on Electrochromic Device Research,” Proc. Soc. Photo-Opt. Instrum. Eng. 692, 19–31 (1986).

J. Nagai, T. Kamimori, M. Mizuhashi, “Transmissive Electrochromic Device,” Sol. Energy Mater. 14, 175–184 (1986).
[Crossref]

1985 (3)

S.-J. Jiang, C. G. Granqvist, “Sputtered In2O3:Sn Films: Preparation and Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 129–136 (1985).

P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Coatings for ‘Smart Windows,” Sol. Energy Mater. 12, 391–402 (1985).
[Crossref]

1984 (3)

C. M. Lampert, “Electrochromic Materials and Devices for Energy Efficient Windows,” Sol. Energy Mater. 11, 1–27 (1984).
[Crossref]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Tungsten Oxide Films for Energy Efficient Windows,” Sol. Energy Mater. 11, 29–34 (1984).
[Crossref]

J. L. Lagzdons, G. E. Bajars, A. R. Lusis, “Modelling of the Solid State Electrochromic System WO3/HSbO3 • 2H2O/ Ni(OH)2,” Phys. Status Sol. A 84, K 197–K 200 (1984).
[Crossref]

Agnihotry, S. A.

S. A. Agnihotry, K. K. Saini, S. Chandra, “Physics & Technology of Thin Film Electrochromic Displays,” Indian J. Pure Appl. Phys. 24, 19–40 (1986).

Armand, M. B.

M. B. Armand, “Polymer Electrolytes,” Ann. Rev. Mater. Sci. 16, 245–261 (1986).
[Crossref]

Ashrit, P. V.

P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).

Baba, N.

T. Yoshino, N. Baba, Kouda, “Electrochromic Properties of V2O5 Thin Films Colloid-Chemically Deposited onto ITO Glasses,” Jpn. J. Appl. Phys. 26, 782–783 (1987).
[Crossref]

Bader, G.

P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).

Bajars, G. E.

J. L. Lagzdons, G. E. Bajars, A. R. Lusis, “Modelling of the Solid State Electrochromic System WO3/HSbO3 • 2H2O/ Ni(OH)2,” Phys. Status Sol. A 84, K 197–K 200 (1984).
[Crossref]

Beni, G.

G. Beni, J. L. Shay, “Ion-insertion Electrochromic Displays,” in Advances in Image Pickup and Display, B. Kazan, Ed., (Academic, New York, 1982), p. 83.

Bonino, F.

F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
[Crossref]

Chandra, S.

S. A. Agnihotry, K. K. Saini, S. Chandra, “Physics & Technology of Thin Film Electrochromic Displays,” Indian J. Pure Appl. Phys. 24, 19–40 (1986).

Chapman, R.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Cheradame, H.

H. Cheradame, J. F. LeNest, “Ionically Conducting Polyether Networks,” in Ref. 30, p. 103.

Cogan, S. F.

S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).

S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).

Crandall, R. S.

B. W. Faughnan, R. S. Crandall, Electrochromic Displays Based on WO3 (Springer-Verlag, Berlin, 1980), p. 181.

Dautremont-Smith, W. C.

W. C. Dautremont-Smith, “Transition Metal Oxide Electrochromic Materials and Displays: A Review,” Displays (Jan.1982), p. 3; Displays (Apr.1982), p. 67.
[Crossref]

Deb, S. K.

S. K. Deb, “Some Perspectives on Electrochromic Device Research,” Proc. Soc. Photo-Opt. Instrum. Eng. 692, 19–31 (1986).

Devynck, J.

J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
[Crossref]

Eriksson, T. S.

T. S. Eriksson, C. G. Granqvist, “Infrared Optical Properties of Silicon Oxynitride Films: Experimental Data and Theoretical Interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[Crossref]

Faughnan, B. W.

B. W. Faughnan, R. S. Crandall, Electrochromic Displays Based on WO3 (Springer-Verlag, Berlin, 1980), p. 181.

Foley, G. H.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Girouard, F. E.

P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).

Goldner, R. B.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Granqvist, C. G.

J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-Based Films in Contact with a Solid Li-Doped Siloxane Elastomer Electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
[Crossref] [PubMed]

T. S. Eriksson, C. G. Granqvist, “Infrared Optical Properties of Silicon Oxynitride Films: Experimental Data and Theoretical Interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[Crossref]

S.-J. Jiang, C. G. Granqvist, “Sputtered In2O3:Sn Films: Preparation and Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 129–136 (1985).

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Coatings for ‘Smart Windows,” Sol. Energy Mater. 12, 391–402 (1985).
[Crossref]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Tungsten Oxide Films for Energy Efficient Windows,” Sol. Energy Mater. 11, 29–34 (1984).
[Crossref]

C. M. Lampert, C. G. Granqvist, Large Area Chromogenics: Materials and Devices for Transmission Control (International Society for Optical Engineering, Bellingham, WA, 1989), to be published.

C. G. Granqvist, “Spectrally Selective Coatings for Energy Efficient Windows,” in Physics of Non-Conventional Energy Sources and Material Science for Energy, G. Furlan et al., Eds. (World Scientific, Singapore, 1987), p. 217.

C. G. Granqvist, “Spectrally Selective Surfaces for Heating and Cooling,” in Physics and Technology of Solar Energy, H. P. Garg et al., Eds. (Reidel, Dordrecht, The Netherlands, 1987), Vol. 2, p. 191.
[Crossref]

C. G. Granqvist, “Energy-Efficient Windows: Options with Present and Forthcoming Technology,” in Electricity: Efficient End-Use and New Generation Technologies, and Their Planning Implications, T. B. Johansson et al., Eds. (Lund U. P., Sweden, 1989), p. 89.

C. G. Granqvist, “New Functional Window Coatings for Automotive Applications,” in Solar Optical Materials, M. G. Hutchins, Ed., (Pergamon, Oxford, 1988), p. 59.

Haas, T.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Hub, S.

S. Hub, A. Tranchant, R. Messina, “X-Ray Investigations on Electroformed LixV2O5 Bronzes,” Electrochim. Acta 33, 997– 1002 (1988).
[Crossref]

Jiang, S.-J.

S.-J. Jiang, C. G. Granqvist, “Sputtered In2O3:Sn Films: Preparation and Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 129–136 (1985).

Kamimori, T.

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic Devices for Transmissive and Reflective Light Control,” Sol. Energy Mater. 16, 27–38 (1987).
[Crossref]

J. Nagai, T. Kamimori, M. Mizuhashi, “Transmissive Electrochromic Device,” Sol. Energy Mater. 14, 175–184 (1986).
[Crossref]

Kaneko, F.

S. Kobayashi, T. Takemura, F. Kaneko, “Dependence of Absorption in Electrochromic V2O5 Thin Films on Crystallinity,” Jpn. J. Appl. Phys. 26, L 1274–L 1276 (1987).

Kobayashi, S.

S. Kobayashi, T. Takemura, F. Kaneko, “Dependence of Absorption in Electrochromic V2O5 Thin Films on Crystallinity,” Jpn. J. Appl. Phys. 26, L 1274–L 1276 (1987).

Kouda,

T. Yoshino, N. Baba, Kouda, “Electrochromic Properties of V2O5 Thin Films Colloid-Chemically Deposited onto ITO Glasses,” Jpn. J. Appl. Phys. 26, 782–783 (1987).
[Crossref]

Lagzdons, J. L.

J. L. Lagzdons, G. E. Bajars, A. R. Lusis, “Modelling of the Solid State Electrochromic System WO3/HSbO3 • 2H2O/ Ni(OH)2,” Phys. Status Sol. A 84, K 197–K 200 (1984).
[Crossref]

Lampert, C. M.

C. M. Lampert, “Electrochromic Materials and Devices for Energy Efficient Windows,” Sol. Energy Mater. 11, 1–27 (1984).
[Crossref]

C. M. Lampert, C. G. Granqvist, Large Area Chromogenics: Materials and Devices for Transmission Control (International Society for Optical Engineering, Bellingham, WA, 1989), to be published.

C. M. Lampert, “Advanced Optical Materials for Energy Efficiency and Solar Conversion,” in Physics of Non-Conventional Energy Sources and Material Science for Energy, G. Furlan et al., Eds., (World Scientific, Singapore, 1987), p. 143.

LeNest, J. F.

H. Cheradame, J. F. LeNest, “Ionically Conducting Polyether Networks,” in Ref. 30, p. 103.

Lusis, A. R.

J. L. Lagzdons, G. E. Bajars, A. R. Lusis, “Modelling of the Solid State Electrochromic System WO3/HSbO3 • 2H2O/ Ni(OH)2,” Phys. Status Sol. A 84, K 197–K 200 (1984).
[Crossref]

McFadden, R. S.

S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).

Messina, R.

J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
[Crossref]

S. Hub, A. Tranchant, R. Messina, “X-Ray Investigations on Electroformed LixV2O5 Bronzes,” Electrochim. Acta 33, 997– 1002 (1988).
[Crossref]

Mizuhashi, M.

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic Devices for Transmissive and Reflective Light Control,” Sol. Energy Mater. 16, 27–38 (1987).
[Crossref]

J. Nagai, T. Kamimori, M. Mizuhashi, “Transmissive Electrochromic Device,” Sol. Energy Mater. 14, 175–184 (1986).
[Crossref]

Nagai, J.

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic Devices for Transmissive and Reflective Light Control,” Sol. Energy Mater. 16, 27–38 (1987).
[Crossref]

J. Nagai, T. Kamimori, M. Mizuhashi, “Transmissive Electrochromic Device,” Sol. Energy Mater. 14, 175–184 (1986).
[Crossref]

Nguyen, N. M.

S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).

Ogata, N.

M. Watanable, N. Ogata, “Ionic Conductivity of Polypropylene Oxide) Electrolytes,” in Ref. 30, p. 39.

Oi, T.

T. Oi, “Electrochromic Materials,” Ann. Rev. Mater. Sci. 16, 185–201 (1986).
[Crossref]

Ottaviani, M.

F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
[Crossref]

Pereira-Ramos, J. P.

J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
[Crossref]

Perotti, S. J.

S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).

Piolet, C.

J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
[Crossref]

Pistoia, G.

F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
[Crossref]

Plante, T. D.

S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).

Rauh, R. D.

S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).

S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).

Saini, K. K.

S. A. Agnihotry, K. K. Saini, S. Chandra, “Physics & Technology of Thin Film Electrochromic Displays,” Indian J. Pure Appl. Phys. 24, 19–40 (1986).

Schulz, S.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Scrosati, B.

F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
[Crossref]

Seward, G.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Shay, J. L.

G. Beni, J. L. Shay, “Ion-insertion Electrochromic Displays,” in Advances in Image Pickup and Display, B. Kazan, Ed., (Academic, New York, 1982), p. 83.

Spindler, R.

Stevens, J. R.

Svensson, J. S. E. M.

J. R. Stevens, J. S. E. M. Svensson, C. G. Granqvist, R. Spindler, “Electrochromism of WO3-Based Films in Contact with a Solid Li-Doped Siloxane Elastomer Electrolyte,” Appl. Opt. 26, 3489–3490 (1987).
[Crossref] [PubMed]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Coatings for ‘Smart Windows,” Sol. Energy Mater. 12, 391–402 (1985).
[Crossref]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Tungsten Oxide Films for Energy Efficient Windows,” Sol. Energy Mater. 11, 29–34 (1984).
[Crossref]

Takemura, T.

S. Kobayashi, T. Takemura, F. Kaneko, “Dependence of Absorption in Electrochromic V2O5 Thin Films on Crystallinity,” Jpn. J. Appl. Phys. 26, L 1274–L 1276 (1987).

Tranchant, A.

S. Hub, A. Tranchant, R. Messina, “X-Ray Investigations on Electroformed LixV2O5 Bronzes,” Electrochim. Acta 33, 997– 1002 (1988).
[Crossref]

Truong, V.-V.

P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).

Watanable, M.

M. Watanable, N. Ogata, “Ionic Conductivity of Polypropylene Oxide) Electrolytes,” in Ref. 30, p. 39.

Wixwat, W.

J. R. Stevens, W. Wixwat, to be published.

Wong, K.

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Yoshino, T.

T. Yoshino, N. Baba, Kouda, “Electrochromic Properties of V2O5 Thin Films Colloid-Chemically Deposited onto ITO Glasses,” Jpn. J. Appl. Phys. 26, 782–783 (1987).
[Crossref]

Ann. Rev. Mater. Sci. (2)

T. Oi, “Electrochromic Materials,” Ann. Rev. Mater. Sci. 16, 185–201 (1986).
[Crossref]

M. B. Armand, “Polymer Electrolytes,” Ann. Rev. Mater. Sci. 16, 245–261 (1986).
[Crossref]

Appl. Opt. (1)

Electrochim. Acta (2)

J. P. Pereira-Ramos, R. Messina, C. Piolet, J. Devynck, “A Thermodynamic Study of Electrochemical Lithium Insertion into Vanadium Pentoxide,” Electrochim. Acta 33, 1003–1008 (1988).
[Crossref]

S. Hub, A. Tranchant, R. Messina, “X-Ray Investigations on Electroformed LixV2O5 Bronzes,” Electrochim. Acta 33, 997– 1002 (1988).
[Crossref]

Indian J. Pure Appl. Phys. (1)

S. A. Agnihotry, K. K. Saini, S. Chandra, “Physics & Technology of Thin Film Electrochromic Displays,” Indian J. Pure Appl. Phys. 24, 19–40 (1986).

J. Appl. Phys. (1)

T. S. Eriksson, C. G. Granqvist, “Infrared Optical Properties of Silicon Oxynitride Films: Experimental Data and Theoretical Interpretation,” J. Appl. Phys. 60, 2081–2091 (1986).
[Crossref]

J. Electrochem. Soc. (1)

F. Bonino, M. Ottaviani, B. Scrosati, G. Pistoia, “A Polymeric Electrolyte Rechargeable Lithium Battery,” J. Electrochem. Soc. 135, 12–15 (1988).
[Crossref]

Jpn. J. Appl. Phys. (2)

T. Yoshino, N. Baba, Kouda, “Electrochromic Properties of V2O5 Thin Films Colloid-Chemically Deposited onto ITO Glasses,” Jpn. J. Appl. Phys. 26, 782–783 (1987).
[Crossref]

S. Kobayashi, T. Takemura, F. Kaneko, “Dependence of Absorption in Electrochromic V2O5 Thin Films on Crystallinity,” Jpn. J. Appl. Phys. 26, L 1274–L 1276 (1987).

Phys. Status Sol. A (1)

J. L. Lagzdons, G. E. Bajars, A. R. Lusis, “Modelling of the Solid State Electrochromic System WO3/HSbO3 • 2H2O/ Ni(OH)2,” Phys. Status Sol. A 84, K 197–K 200 (1984).
[Crossref]

Proc. Soc. Photo-Opt. Instrum. Eng. (6)

S. F. Cogan, N. M. Nguyen, S. J. Perotti, R. D. Rauh, “Electrochromism in Sputtered Vanadium Pentoxide,” Proc. Soc. Photo-Opt. Instrum. Eng. 1016, 57–62 (1988).

S. K. Deb, “Some Perspectives on Electrochromic Device Research,” Proc. Soc. Photo-Opt. Instrum. Eng. 692, 19–31 (1986).

S. F. Cogan, T. D. Plante, R. S. McFadden, R. D. Rauh, “Design and Optical Modulation of a-WO3/a-IrO2 Electrochromic Windows,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 106– 112 (1987).

S.-J. Jiang, C. G. Granqvist, “Sputtered In2O3:Sn Films: Preparation and Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 129–136 (1985).

P. V. Ashrit, F. E. Girouard, V.-V. Truong, G. Bader, “LiF as Electrolyte for Solid State Electrochromic Structures,” Proc. Soc. Photo-Opt. Instrum. Eng. 562, 53–60 (1985).

G. Seward, R. B. Goldner, K. Wong, T. Haas, G. H. Foley, R. Chapman, S. Schulz, “Prototype All-Solid Lithiated Smart Window Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 823, 90–93 (1987).

Sol. Energy Mater. (5)

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Coatings for ‘Smart Windows,” Sol. Energy Mater. 12, 391–402 (1985).
[Crossref]

C. M. Lampert, “Electrochromic Materials and Devices for Energy Efficient Windows,” Sol. Energy Mater. 11, 1–27 (1984).
[Crossref]

T. Kamimori, J. Nagai, M. Mizuhashi, “Electrochromic Devices for Transmissive and Reflective Light Control,” Sol. Energy Mater. 16, 27–38 (1987).
[Crossref]

J. S. E. M. Svensson, C. G. Granqvist, “Electrochromic Tungsten Oxide Films for Energy Efficient Windows,” Sol. Energy Mater. 11, 29–34 (1984).
[Crossref]

J. Nagai, T. Kamimori, M. Mizuhashi, “Transmissive Electrochromic Device,” Sol. Energy Mater. 14, 175–184 (1986).
[Crossref]

Other (14)

J. R. MacCallum, C. A. Vincent, Eds., Polymer Electrolyte Reviews-1 (Elsevier, London, 1987).

M. Watanable, N. Ogata, “Ionic Conductivity of Polypropylene Oxide) Electrolytes,” in Ref. 30, p. 39.

H. Cheradame, J. F. LeNest, “Ionically Conducting Polyether Networks,” in Ref. 30, p. 103.

J. R. Stevens, W. Wixwat, to be published.

C. G. Granqvist, “New Functional Window Coatings for Automotive Applications,” in Solar Optical Materials, M. G. Hutchins, Ed., (Pergamon, Oxford, 1988), p. 59.

B. W. Faughnan, R. S. Crandall, Electrochromic Displays Based on WO3 (Springer-Verlag, Berlin, 1980), p. 181.

G. Beni, J. L. Shay, “Ion-insertion Electrochromic Displays,” in Advances in Image Pickup and Display, B. Kazan, Ed., (Academic, New York, 1982), p. 83.

W. C. Dautremont-Smith, “Transition Metal Oxide Electrochromic Materials and Displays: A Review,” Displays (Jan.1982), p. 3; Displays (Apr.1982), p. 67.
[Crossref]

C. M. Lampert, “Advanced Optical Materials for Energy Efficiency and Solar Conversion,” in Physics of Non-Conventional Energy Sources and Material Science for Energy, G. Furlan et al., Eds., (World Scientific, Singapore, 1987), p. 143.

C. G. Granqvist, “Spectrally Selective Coatings for Energy Efficient Windows,” in Physics of Non-Conventional Energy Sources and Material Science for Energy, G. Furlan et al., Eds. (World Scientific, Singapore, 1987), p. 217.

C. G. Granqvist, “Spectrally Selective Surfaces for Heating and Cooling,” in Physics and Technology of Solar Energy, H. P. Garg et al., Eds. (Reidel, Dordrecht, The Netherlands, 1987), Vol. 2, p. 191.
[Crossref]

C. G. Granqvist, “Energy-Efficient Windows: Options with Present and Forthcoming Technology,” in Electricity: Efficient End-Use and New Generation Technologies, and Their Planning Implications, T. B. Johansson et al., Eds. (Lund U. P., Sweden, 1989), p. 89.

C. M. Lampert, C. G. Granqvist, Large Area Chromogenics: Materials and Devices for Transmission Control (International Society for Optical Engineering, Bellingham, WA, 1989), to be published.

Donelly Corp., Holland, MI.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Design principles for electrochromics-based smart windows, showing transparent conductors (TC), electrochromic layer(s) (EC), ionic conductor (IC), and ion storage (IS). The latter may have electrochromic properties. Transmittance is changed by application of voltage (U) pulses.

Fig. 2
Fig. 2

Time-dependent voltage, current density, and charge density measured by cyclic voltammetry on electrochromic WO3-based films in an electrolyte of LiClO4 + PG. Solid curves in middle and lower parts were recorded for an evaporated film cycled 10 times. Dashed curves were recorded for a sputtered film cycled 60 times.

Fig. 3
Fig. 3

Time-dependent voltage, current density, and charge density measured by cyclic voltammetry on a V2O5-based film in an electrolyte of LiClO4 + PG. The sample was cycled 10 times prior to measurements.

Fig. 4
Fig. 4

Spectral transmittance for electrochromic WO3-based films treated in LiClO4 + PG at the shown voltages (U). (a) and (b) refer to the shown deposition techniques and film thicknesses (t).

Fig. 5
Fig. 5

Spectral transmittance for a V2O5-based film (thickness t) treated in LiClO4 + PG at the voltages (U) shown.

Fig. 6
Fig. 6

Spectral transmittance through PPG-LiClO4-MMA solid adhesive electrolyte layers (thickness te) between two glass plates.

Fig. 7
Fig. 7

Cross-sectional view of the laminated two-layer samples used for optical measurements. A voltage U was applied between wires attached to the In2O3:Sn coatings.

Fig. 8
Fig. 8

Spectral transmittance for electrochromic devices of the laminated two-layer type (see Fig. 7). Materials, deposition techniques, and film thicknesses (t) are shown. The samples in (a) and (b) were cycled 5 and 10 times, respectively, prior to the measurements.

Tables (1)

Tables Icon

Table I Sputtering conditions for the deposition of electrochromic coatingsa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

x Li + + x e + WO 3 bleach color Li x WO 3 .

Metrics