Abstract

Different rotational CARS techniques have been evaluated in terms of single-shot temperature accuracy and signal intensity in room temperature nitrogen and in flames. The different techniques include both dual broadband techniques, using one or two broadband dye lasers, and conventional rotational CARS with different dye lasers. These techniques are also compared with vibrational CARS concerning temperature accuracy and with theoretical predictions. The results indicate that the dual broadband techniques are to be preferred over conventional rotational CARS and also over vibrational CARS at room temperature. At flame temperatures the vibrational CARS technique seems to be the technique yielding highest temperature accuracy. The experimental results are also generally in good agreement with the calculated values.

© 1989 Optical Society of America

Full Article  |  PDF Article

Corrections

M. Alden, P.-E. Bengtsson, H. Edner, S. Kroll, and D. Nilsson, "Rotational CARS: a comparison of different techniques with emphasis on accuracy in temperature determination: erratum," Appl. Opt. 29, 4434_1-4434 (1990)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-29-30-4434_1

References

  • View by:
  • |
  • |
  • |

  1. D. R. Crosley, Ed. “Laser Probes for Combustion Chemistry,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).
    [CrossRef]
  2. A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Cambridge, MA, 1987).
  3. P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
    [CrossRef]
  4. A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
    [CrossRef]
  5. W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
    [CrossRef]
  6. D. Klick, K. A. Marko, L. Rimai, “Broadband Single-Pulse CARS Spectra in a Fired Internal Combustion Engine,” Appl. Opt. 20, 1178–1181 (1981).
    [CrossRef] [PubMed]
  7. M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434–3437 (1984).
    [CrossRef]
  8. A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133–147 (1980).
    [CrossRef]
  9. W. A. England, J. M. Milne, S. N. Jenny, D. A. Greenhalgh, “Application of CARS to an Operating Chemical Reactor,” Appl. Spectrosc. 38, 867–876 (1984).
    [CrossRef]
  10. J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722–724 (1976).
    [CrossRef]
  11. I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378–379 (1978).
    [CrossRef]
  12. L. P. Goss, J. W. Fleming, A. B. Harvey, “Pure Rotational Coherent Anti-Stokes Raman Scattering of Simple Gases,” Opt. Lett. 5, 345–347 (1980).
    [CrossRef] [PubMed]
  13. C. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919–5923 (1980).
    [CrossRef]
  14. J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380–382 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741–1743 (1980).
    [CrossRef] [PubMed]
  15. D. V. Murphy, R. K. Chang, “Single-Pulse Broadband Rotational Coherent Anti-Stokes Raman-Scattering Thermometry of Cold N2 Gas,” Opt. Lett. 6, 233–235 (1981).
    [CrossRef] [PubMed]
  16. J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental Comparison of Broadband Rotational Coherent Anti-Stokes Raman Scattering (CARS) and Broadband Vibrational CARS in a Flame,” Opt. Lett. 9, 341–343 (1984).
    [CrossRef] [PubMed]
  17. B. Dick, A. Gierulski, “Multiplex Rotational CARS of N2, O2 and CO with Excimer Pumped Dye Lasers: Species Identification and Thermometry in the Intermediate Temperature Range with High Temporal and Spatial Resolution,” Appl. Phys. B 40, 1–7 (1986).
    [CrossRef]
  18. A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
    [CrossRef] [PubMed]
  19. A. C. Eckbreth, T. J. Anderson, “Simultaneous Rotational Coherent Anti-Stokes Raman Spectroscopy and Coherent Stokes Raman Spectroscopy with Arbitrary Pump–Stokes Spectral Separation,” Opt. Lett. 11, 496–498 (1986).
    [CrossRef] [PubMed]
  20. M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS Generation Through a Multiple Four-Color Interaction,” Appl. Opt. 25, 4493–4500 (1986).
    [CrossRef] [PubMed]
  21. M. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625–655 (1979).
    [CrossRef]
  22. D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parames-waran, “Precision of Multiplex CARS Temperatures Using Both Single-Mode and Multimode Pump Lasers,” Appl. Opt. 26, 99–110 (1987).
    [CrossRef] [PubMed]
  23. S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl Opt. 26, 1068–1073 (1987).
    [CrossRef] [PubMed]
  24. D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise Characteristics of Single-Shot Broadband CARS Signals,” Appl. Opt. 26, 4298–4302 (1987).
    [CrossRef] [PubMed]
  25. D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907–913 (1985).
    [CrossRef] [PubMed]
  26. M. Pealat, P. Bouchardy, M. Lefebvre, J.-P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
    [CrossRef] [PubMed]
  27. A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328–1339 (1984).
    [CrossRef] [PubMed]
  28. D. R. Snelling, R. A. Sawchuk, R. E. Mueller, “Single Pulse CARS Noise: a Comparison Between Single-Mode and Multimode Pump Lasers,” Appl. Opt. 24, 2771–2778 (1985).
    [CrossRef] [PubMed]
  29. R. J. Hall, D. A. Greenhalgh, “Noise Properties of Single-Pulse CARS Spectroscopy with Multimode Pump Sources,” J. Opt. Soc. Am. B 3, 1637–1641 (1986).
    [CrossRef]
  30. S. Kröll, D. Sandell, “Influence of Laser Mode Statistics on Noise in Nonlinear Optical Processes—Application to Single-Shot Broadband CARS Thermometry,” J. Opt. Soc. Am. B 5, 1910–1926 (1988).
    [CrossRef]
  31. S. Kröll, M. Aldén, P.-E. Bengtsson, C. Lüfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl. Phys. B, in press.
  32. R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47–60 (1979).
    [CrossRef]
  33. R. J. Hall, J. F. Verdieck, A. C. Eckbreth, “Pressure Induced Narrowing of the CARS Spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
    [CrossRef]
  34. R. J. Hall, L. R. Boedeker, “CARS Thermometry in Fuel-Rich Combustion Zones,” Appl. Opt. 23, 1340–1346 (1984).
    [CrossRef] [PubMed]
  35. T. Parameswaran, D. R. Snelling, “A Computer Program to Generate Theoretical Coherent Anti-Stokes Raman Spectra,” Defence Research EstablishmentOttawa, DREO Technical Note 81–18 (1982).
  36. D. Nilsson, “Theoretical and Experimental Investigations of Rotational CARS as a Technique for Temperature Probing,” Lund Reports on Atomic Physics, LRAP-76 (1987).
  37. G. J. Rosasco, W. S. Hurst, “Measurement of Resonant Third-Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
    [CrossRef]
  38. M. C. Drake, “Rotational Raman Intensity-Correction Factors Due to Vibrational Anharmonicity: Their Effect on Temperature Measurements,” Opt. Lett. 7, 440–441 (1982).
    [CrossRef] [PubMed]
  39. M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from Rotational and Vibrational Raman Scattering: Effects of Vibrational–Rotational Interactions and Other Corrections,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).
  40. G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
    [CrossRef] [PubMed]
  41. G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
    [CrossRef] [PubMed]
  42. F. Y. Yueh, E. J. Beiting, “Analytical Expressions for Coherent Anti-Stokes Raman Spectral (CARS) Profiles,” Comput. Phys. Commun. 42, 65–71 (1986).
    [CrossRef]
  43. J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
    [CrossRef]
  44. H. Kataoka, S. Maeda, C. Hirose, “Effects of Laser Linewidth on the coherent Anti-Stokes Raman Spectroscopy Spectral Profile,” Appl. Spectrosc. 36, 565–569 (1982).
    [CrossRef]
  45. R. E. Teets, “Accurate Convolutions of Coherent Anti-Stokes Raman Spectra,” Opt. Lett. 9, 226–228 (1984).
    [CrossRef] [PubMed]
  46. S. Kröll, D. Sandell, “A Model for Calculating the Noise Due to the Stochastic Nature of Multimode Laser Radiation in Nonlinear Optical Processes,” in Proceedings, NLO’88, organized by the Society for Optical & Quantum Electronics (1988).
  47. A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
    [CrossRef]
  48. R. L. Farrow, R. P. Lucht, L. A. Rahn, “Measurements of the Nonresonant Third-Order Susceptibilities of Gases Using Coherent Anti-Stokes Raman Spectroscopy,” J. Opt. Soc. Am. B 4, 1241–1246 (1987).
    [CrossRef]
  49. T. Lasser, E. Magens, A. Leipertz, “Gas Thermometry by Fourier Analysis of Rotational Coherent Anti-Stokes Raman Scattering,” Opt. Lett. 10, 535–537 (1985).
    [CrossRef] [PubMed]
  50. A. Leipertz, E. Magens, T. Lasser. “Flame Temperature Measurements Using a Novel Rotational CARS Analysis Technique,” presented at AIAA Eighteenth Fluid Dynamics and Plasma Dynamics and Laser Conference, Cincinnati, OH (16–18 July 1985).
  51. A. V. Masalov, “Spectral and Temporal Fluctuations of Broadband Laser Radiation,” Prog. Opt. 22, 145–196 (1985).
    [CrossRef]
  52. Z. W. Li, C. Radzewicz, M. G. Raymer, “Temporal Smoothing of Multimode Dye-Laser Pulses,” Opt. Lett. 12, 416–418 (1987).
    [CrossRef] [PubMed]
  53. C. Radzewics, Z. W. Li, M. G. Raymer, “Amplitude-Stabilized Chaotic Light,” Phys. Rev. A 37, 2039–2047 (1988).
    [CrossRef]
  54. D. R. Snelling, G. J. Smallwood, R. A. Sawchuck, “Nonlinearity and Image Persistence of P-20-Phosphor-Based Intensified Photodiode Array Detectors used in CARS Spectroscopy,” Appl. Opt. in press.
  55. C. M. Penney, R. L. St. Peters, M. Lapp, “Absolute Rotational Raman Cross Section for N2, O2, and CO2,” J. Opt. Soc. Am. 64, 712–716 (1974).
    [CrossRef]
  56. A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87–98 (1979).
    [CrossRef]
  57. P.-E. Bengtsson, D. Nilsson, M. Aldén, S. Kröll, “Vibrational CARS Thermometry in Sooty Flames,” to be published.

1988 (3)

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

C. Radzewics, Z. W. Li, M. G. Raymer, “Amplitude-Stabilized Chaotic Light,” Phys. Rev. A 37, 2039–2047 (1988).
[CrossRef]

S. Kröll, D. Sandell, “Influence of Laser Mode Statistics on Noise in Nonlinear Optical Processes—Application to Single-Shot Broadband CARS Thermometry,” J. Opt. Soc. Am. B 5, 1910–1926 (1988).
[CrossRef]

1987 (5)

1986 (8)

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[CrossRef] [PubMed]

F. Y. Yueh, E. J. Beiting, “Analytical Expressions for Coherent Anti-Stokes Raman Spectral (CARS) Profiles,” Comput. Phys. Commun. 42, 65–71 (1986).
[CrossRef]

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

B. Dick, A. Gierulski, “Multiplex Rotational CARS of N2, O2 and CO with Excimer Pumped Dye Lasers: Species Identification and Thermometry in the Intermediate Temperature Range with High Temporal and Spatial Resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Simultaneous Rotational Coherent Anti-Stokes Raman Spectroscopy and Coherent Stokes Raman Spectroscopy with Arbitrary Pump–Stokes Spectral Separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

R. J. Hall, D. A. Greenhalgh, “Noise Properties of Single-Pulse CARS Spectroscopy with Multimode Pump Sources,” J. Opt. Soc. Am. B 3, 1637–1641 (1986).
[CrossRef]

M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS Generation Through a Multiple Four-Color Interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

1985 (7)

1984 (6)

1982 (2)

1981 (2)

1980 (5)

L. P. Goss, J. W. Fleming, A. B. Harvey, “Pure Rotational Coherent Anti-Stokes Raman Scattering of Simple Gases,” Opt. Lett. 5, 345–347 (1980).
[CrossRef] [PubMed]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380–382 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741–1743 (1980).
[CrossRef] [PubMed]

C. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919–5923 (1980).
[CrossRef]

R. J. Hall, J. F. Verdieck, A. C. Eckbreth, “Pressure Induced Narrowing of the CARS Spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[CrossRef]

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133–147 (1980).
[CrossRef]

1979 (3)

M. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47–60 (1979).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87–98 (1979).
[CrossRef]

1978 (2)

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378–379 (1978).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

1976 (2)

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722–724 (1976).
[CrossRef]

1974 (1)

1973 (1)

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Aldén, M.

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl Opt. 26, 1068–1073 (1987).
[CrossRef] [PubMed]

M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS Generation Through a Multiple Four-Color Interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434–3437 (1984).
[CrossRef]

P.-E. Bengtsson, D. Nilsson, M. Aldén, S. Kröll, “Vibrational CARS Thermometry in Sooty Flames,” to be published.

S. Kröll, M. Aldén, P.-E. Bengtsson, C. Lüfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl. Phys. B, in press.

Anderson, T. J.

Asawaroengchai, C.

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from Rotational and Vibrational Raman Scattering: Effects of Vibrational–Rotational Interactions and Other Corrections,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).

Barrett, J. J.

J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722–724 (1976).
[CrossRef]

Beattie, I. R.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378–379 (1978).
[CrossRef]

Beiting, E. J.

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

F. Y. Yueh, E. J. Beiting, “Analytical Expressions for Coherent Anti-Stokes Raman Spectral (CARS) Profiles,” Comput. Phys. Commun. 42, 65–71 (1986).
[CrossRef]

Bengtsson, P.-E.

M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS Generation Through a Multiple Four-Color Interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

S. Kröll, M. Aldén, P.-E. Bengtsson, C. Lüfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl. Phys. B, in press.

P.-E. Bengtsson, D. Nilsson, M. Aldén, S. Kröll, “Vibrational CARS Thermometry in Sooty Flames,” to be published.

Berglind, T.

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl Opt. 26, 1068–1073 (1987).
[CrossRef] [PubMed]

Bischel, W. K.

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[CrossRef] [PubMed]

Boedeker, L. R.

Bouchardy, P.

Chang, R. K.

Dick, B.

B. Dick, A. Gierulski, “Multiplex Rotational CARS of N2, O2 and CO with Excimer Pumped Dye Lasers: Species Identification and Thermometry in the Intermediate Temperature Range with High Temporal and Spatial Resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

Dobbs, G. M.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328–1339 (1984).
[CrossRef] [PubMed]

Drake, M. C.

M. C. Drake, “Rotational Raman Intensity-Correction Factors Due to Vibrational Anharmonicity: Their Effect on Temperature Measurements,” Opt. Lett. 7, 440–441 (1982).
[CrossRef] [PubMed]

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from Rotational and Vibrational Raman Scattering: Effects of Vibrational–Rotational Interactions and Other Corrections,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).

Dyer, M. J.

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[CrossRef] [PubMed]

Eckbreth, A. C.

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, “Simultaneous Rotational Coherent Anti-Stokes Raman Spectroscopy and Coherent Stokes Raman Spectroscopy with Arbitrary Pump–Stokes Spectral Separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328–1339 (1984).
[CrossRef] [PubMed]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380–382 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741–1743 (1980).
[CrossRef] [PubMed]

R. J. Hall, J. F. Verdieck, A. C. Eckbreth, “Pressure Induced Narrowing of the CARS Spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[CrossRef]

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133–147 (1980).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87–98 (1979).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Cambridge, MA, 1987).

Edner, H.

England, W. A.

Farrow, R. L.

Fleming, J. W.

Gierulski, A.

B. Dick, A. Gierulski, “Multiplex Rotational CARS of N2, O2 and CO with Excimer Pumped Dye Lasers: Species Identification and Thermometry in the Intermediate Temperature Range with High Temporal and Spatial Resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

Gilson, T. R.

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378–379 (1978).
[CrossRef]

Goss, L. P.

Greenhalgh, D. A.

Hall, R. J.

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl Opt. 26, 1068–1073 (1987).
[CrossRef] [PubMed]

R. J. Hall, D. A. Greenhalgh, “Noise Properties of Single-Pulse CARS Spectroscopy with Multimode Pump Sources,” J. Opt. Soc. Am. B 3, 1637–1641 (1986).
[CrossRef]

R. J. Hall, L. R. Boedeker, “CARS Thermometry in Fuel-Rich Combustion Zones,” Appl. Opt. 23, 1340–1346 (1984).
[CrossRef] [PubMed]

R. J. Hall, J. F. Verdieck, A. C. Eckbreth, “Pressure Induced Narrowing of the CARS Spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[CrossRef]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380–382 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741–1743 (1980).
[CrossRef] [PubMed]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47–60 (1979).
[CrossRef]

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87–98 (1979).
[CrossRef]

Harvey, A. B.

Herring, G. C.

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[CrossRef] [PubMed]

Hirose, C.

Hurst, W. S.

G. J. Rosasco, W. S. Hurst, “Measurement of Resonant Third-Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef]

Jenny, S. N.

Kataoka, H.

Klick, D.

Kröll, S.

S. Kröll, D. Sandell, “Influence of Laser Mode Statistics on Noise in Nonlinear Optical Processes—Application to Single-Shot Broadband CARS Thermometry,” J. Opt. Soc. Am. B 5, 1910–1926 (1988).
[CrossRef]

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl Opt. 26, 1068–1073 (1987).
[CrossRef] [PubMed]

S. Kröll, M. Aldén, P.-E. Bengtsson, C. Lüfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl. Phys. B, in press.

P.-E. Bengtsson, D. Nilsson, M. Aldén, S. Kröll, “Vibrational CARS Thermometry in Sooty Flames,” to be published.

S. Kröll, D. Sandell, “A Model for Calculating the Noise Due to the Stochastic Nature of Multimode Laser Radiation in Nonlinear Optical Processes,” in Proceedings, NLO’88, organized by the Society for Optical & Quantum Electronics (1988).

Lapp, M.

Lasser, T.

T. Lasser, E. Magens, A. Leipertz, “Gas Thermometry by Fourier Analysis of Rotational Coherent Anti-Stokes Raman Scattering,” Opt. Lett. 10, 535–537 (1985).
[CrossRef] [PubMed]

A. Leipertz, E. Magens, T. Lasser. “Flame Temperature Measurements Using a Novel Rotational CARS Analysis Technique,” presented at AIAA Eighteenth Fluid Dynamics and Plasma Dynamics and Laser Conference, Cincinnati, OH (16–18 July 1985).

Lefebvre, M.

Leipertz, A.

Li, Z. W.

C. Radzewics, Z. W. Li, M. G. Raymer, “Amplitude-Stabilized Chaotic Light,” Phys. Rev. A 37, 2039–2047 (1988).
[CrossRef]

Z. W. Li, C. Radzewicz, M. G. Raymer, “Temporal Smoothing of Multimode Dye-Laser Pulses,” Opt. Lett. 12, 416–418 (1987).
[CrossRef] [PubMed]

Lucht, R. P.

Lüfström, C.

S. Kröll, M. Aldén, P.-E. Bengtsson, C. Lüfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl. Phys. B, in press.

Luthe, J. C.

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

Maeda, S.

Magens, E.

T. Lasser, E. Magens, A. Leipertz, “Gas Thermometry by Fourier Analysis of Rotational Coherent Anti-Stokes Raman Scattering,” Opt. Lett. 10, 535–537 (1985).
[CrossRef] [PubMed]

A. Leipertz, E. Magens, T. Lasser. “Flame Temperature Measurements Using a Novel Rotational CARS Analysis Technique,” presented at AIAA Eighteenth Fluid Dynamics and Plasma Dynamics and Laser Conference, Cincinnati, OH (16–18 July 1985).

Marko, K. A.

Masalov, A. V.

A. V. Masalov, “Spectral and Temporal Fluctuations of Broadband Laser Radiation,” Prog. Opt. 22, 145–196 (1985).
[CrossRef]

Milne, J. M.

Mueller, R. E.

Murphy, D. V.

Nilsson, D.

D. Nilsson, “Theoretical and Experimental Investigations of Rotational CARS as a Technique for Temperature Probing,” Lund Reports on Atomic Physics, LRAP-76 (1987).

P.-E. Bengtsson, D. Nilsson, M. Aldén, S. Kröll, “Vibrational CARS Thermometry in Sooty Flames,” to be published.

Parameswaran, T.

D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise Characteristics of Single-Shot Broadband CARS Signals,” Appl. Opt. 26, 4298–4302 (1987).
[CrossRef] [PubMed]

T. Parameswaran, D. R. Snelling, “A Computer Program to Generate Theoretical Coherent Anti-Stokes Raman Spectra,” Defence Research EstablishmentOttawa, DREO Technical Note 81–18 (1982).

Parames-waran, T.

Pealat, M.

Penney, C. M.

Peters, R. L. St.

Radzewics, C.

C. Radzewics, Z. W. Li, M. G. Raymer, “Amplitude-Stabilized Chaotic Light,” Phys. Rev. A 37, 2039–2047 (1988).
[CrossRef]

Radzewicz, C.

Rahn, L. A.

Raymer, M. G.

C. Radzewics, Z. W. Li, M. G. Raymer, “Amplitude-Stabilized Chaotic Light,” Phys. Rev. A 37, 2039–2047 (1988).
[CrossRef]

Z. W. Li, C. Radzewicz, M. G. Raymer, “Temporal Smoothing of Multimode Dye-Laser Pulses,” Opt. Lett. 12, 416–418 (1987).
[CrossRef] [PubMed]

Regnier, P. R.

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Rimai, L.

Roh, W. B.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Roland, C. M.

C. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919–5923 (1980).
[CrossRef]

Rosasco, G. J.

G. J. Rosasco, W. S. Hurst, “Measurement of Resonant Third-Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef]

Rosenblatt, G. M.

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from Rotational and Vibrational Raman Scattering: Effects of Vibrational–Rotational Interactions and Other Corrections,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).

Sandell, D.

S. Kröll, D. Sandell, “Influence of Laser Mode Statistics on Noise in Nonlinear Optical Processes—Application to Single-Shot Broadband CARS Thermometry,” J. Opt. Soc. Am. B 5, 1910–1926 (1988).
[CrossRef]

S. Kröll, D. Sandell, “A Model for Calculating the Noise Due to the Stochastic Nature of Multimode Laser Radiation in Nonlinear Optical Processes,” in Proceedings, NLO’88, organized by the Society for Optical & Quantum Electronics (1988).

Sawchuck, R. A.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuck, “Nonlinearity and Image Persistence of P-20-Phosphor-Based Intensified Photodiode Array Detectors used in CARS Spectroscopy,” Appl. Opt. in press.

Sawchuk, R. A.

Schreiber, P. W.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

Shirley, J. A.

Smallwood, G. J.

Snelling, D. R.

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parames-waran, “Precision of Multiplex CARS Temperatures Using Both Single-Mode and Multimode Pump Lasers,” Appl. Opt. 26, 99–110 (1987).
[CrossRef] [PubMed]

D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise Characteristics of Single-Shot Broadband CARS Signals,” Appl. Opt. 26, 4298–4302 (1987).
[CrossRef] [PubMed]

D. R. Snelling, R. A. Sawchuk, R. E. Mueller, “Single Pulse CARS Noise: a Comparison Between Single-Mode and Multimode Pump Lasers,” Appl. Opt. 24, 2771–2778 (1985).
[CrossRef] [PubMed]

T. Parameswaran, D. R. Snelling, “A Computer Program to Generate Theoretical Coherent Anti-Stokes Raman Spectra,” Defence Research EstablishmentOttawa, DREO Technical Note 81–18 (1982).

D. R. Snelling, G. J. Smallwood, R. A. Sawchuck, “Nonlinearity and Image Persistence of P-20-Phosphor-Based Intensified Photodiode Array Detectors used in CARS Spectroscopy,” Appl. Opt. in press.

Snow, J. B.

Steele, W. A.

C. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919–5923 (1980).
[CrossRef]

Stufflebeam, J. H.

Taran, J. P. E.

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

Taran, J.-P.

Teets, R. E.

Tellex, P. A.

Verdieck, J. F.

R. J. Hall, J. F. Verdieck, A. C. Eckbreth, “Pressure Induced Narrowing of the CARS Spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[CrossRef]

Wallin, S.

Whittley, S. T.

Yueh, F. Y.

F. Y. Yueh, E. J. Beiting, “Analytical Expressions for Coherent Anti-Stokes Raman Spectral (CARS) Profiles,” Comput. Phys. Commun. 42, 65–71 (1986).
[CrossRef]

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

Yuratich, M.

M. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Zheng, J.

Appl Opt. (1)

S. Kröll, M. Aldén, T. Berglind, R. J. Hall, “Noise Characteristics of Single Shot Broadband Raman-Resonant CARS with Single- and Multimode Lasers,” Appl Opt. 26, 1068–1073 (1987).
[CrossRef] [PubMed]

Appl. Opt. (11)

D. Klick, K. A. Marko, L. Rimai, “Broadband Single-Pulse CARS Spectra in a Fired Internal Combustion Engine,” Appl. Opt. 20, 1178–1181 (1981).
[CrossRef] [PubMed]

A. C. Eckbreth, G. M. Dobbs, J. H. Stufflebeam, P. A. Tellex, “CARS Temperature and Species Measurements in Augmented Jet Engine Exhausts,” Appl. Opt. 23, 1328–1339 (1984).
[CrossRef] [PubMed]

R. J. Hall, L. R. Boedeker, “CARS Thermometry in Fuel-Rich Combustion Zones,” Appl. Opt. 23, 1340–1346 (1984).
[CrossRef] [PubMed]

D. A. Greenhalgh, S. T. Whittley, “Mode Noise in Broadband CARS Spectroscopy,” Appl. Opt. 24, 907–913 (1985).
[CrossRef] [PubMed]

M. Pealat, P. Bouchardy, M. Lefebvre, J.-P. Taran, “Precision of Multiplex CARS Temperature Measurements,” Appl. Opt. 24, 1012–1022 (1985).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Dual Broadband CARS for Simultaneous Multiple Species Measurements,” Appl. Opt. 24, 2731–2736 (1985).
[CrossRef] [PubMed]

D. R. Snelling, R. A. Sawchuk, R. E. Mueller, “Single Pulse CARS Noise: a Comparison Between Single-Mode and Multimode Pump Lasers,” Appl. Opt. 24, 2771–2778 (1985).
[CrossRef] [PubMed]

D. R. Snelling, G. J. Smallwood, R. A. Sawchuk, T. Parames-waran, “Precision of Multiplex CARS Temperatures Using Both Single-Mode and Multimode Pump Lasers,” Appl. Opt. 26, 99–110 (1987).
[CrossRef] [PubMed]

D. R. Snelling, T. Parameswaran, G. J. Smallwood, “Noise Characteristics of Single-Shot Broadband CARS Signals,” Appl. Opt. 26, 4298–4302 (1987).
[CrossRef] [PubMed]

M. Aldén, P.-E. Bengtsson, H. Edner, “Rotational CARS Generation Through a Multiple Four-Color Interaction,” Appl. Opt. 25, 4493–4500 (1986).
[CrossRef] [PubMed]

M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434–3437 (1984).
[CrossRef]

Appl. Phys. B (2)

B. Dick, A. Gierulski, “Multiplex Rotational CARS of N2, O2 and CO with Excimer Pumped Dye Lasers: Species Identification and Thermometry in the Intermediate Temperature Range with High Temporal and Spatial Resolution,” Appl. Phys. B 40, 1–7 (1986).
[CrossRef]

A. C. Eckbreth, T. J. Anderson, G. M. Dobbs, “Multi-Color CARS for Hydrogen-Fueled Scramjet Applications,” Appl. Phys. B 45, 215–223 (1988).
[CrossRef]

Appl. Phys. Lett. (4)

P. R. Regnier, J. P. E. Taran, “On the Possibility of Measuring Gas Concentrations by Stimulated Anti-Stokes Scattering,” Appl. Phys. Lett. 23, 240–242 (1973).
[CrossRef]

A. C. Eckbreth, “BOXCARS: Crossed-Beam Phase-Matched CARS Generation in Gases,” Appl. Phys. Lett. 32, 421–423 (1978).
[CrossRef]

W. B. Roh, P. W. Schreiber, J. P. E. Taran, “Single-Pulse Coherent Anti-Stokes Raman Scattering,” Appl. Phys. Lett. 29, 174–176 (1976).
[CrossRef]

J. J. Barrett, “Generation of Coherent Anti-Stokes Rotational Raman Radiation in Hydrogen Gas,” Appl. Phys. Lett. 29, 722–724 (1976).
[CrossRef]

Appl. Spectrosc. (2)

Combust. Flame (3)

A. C. Eckbreth, R. J. Hall, “CARS Thermometry in a Sooting Flame,” Combust. Flame 36, 87–98 (1979).
[CrossRef]

A. C. Eckbreth, “CARS Thermometry in Practical Combustors,” Combust. Flame 39, 133–147 (1980).
[CrossRef]

R. J. Hall, “CARS Spectra of Combustion Gases,” Combust. Flame 35, 47–60 (1979).
[CrossRef]

Comput. Phys. Commun. (2)

F. Y. Yueh, E. J. Beiting, “Analytical Expressions for Coherent Anti-Stokes Raman Spectral (CARS) Profiles,” Comput. Phys. Commun. 42, 65–71 (1986).
[CrossRef]

J. C. Luthe, E. J. Beiting, F. Y. Yueh, “Algorithms for Calculating Coherent Anti-Stokes Raman Spectra: Application to Several Small Molecules,” Comput. Phys. Commun. 42, 73–92 (1986).
[CrossRef]

J. Chem. Phys. (1)

C. M. Roland, W. A. Steele, “Intensities in Pure Rotational CARS of Air,” J. Chem. Phys. 73, 5919–5923 (1980).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (3)

Mol. Phys. (1)

M. Yuratich, “Effects of Laser Linewidth on Coherent Anti-Stokes Raman Spectroscopy,” Mol. Phys. 38, 625–655 (1979).
[CrossRef]

Nature London (1)

I. R. Beattie, T. R. Gilson, D. A. Greenhalgh, “Low Frequency Anti-Stokes Raman Spectroscopy of Air,” Nature London 276, 378–379 (1978).
[CrossRef]

Opt. Commun. (1)

R. J. Hall, J. F. Verdieck, A. C. Eckbreth, “Pressure Induced Narrowing of the CARS Spectrum of N2,” Opt. Commun. 35, 69–75 (1980).
[CrossRef]

Opt. Lett. (10)

L. P. Goss, J. W. Fleming, A. B. Harvey, “Pure Rotational Coherent Anti-Stokes Raman Scattering of Simple Gases,” Opt. Lett. 5, 345–347 (1980).
[CrossRef] [PubMed]

J. A. Shirley, R. J. Hall, A. C. Eckbreth, “Folded BOXCARS for Rotational Raman Studies,” Opt. Lett. 5, 380–382 (1980); Y. Prior, “Three-Dimensional Phase Matching in Four-Wave Mixing,” Appl. Opt. 19, 1741–1743 (1980).
[CrossRef] [PubMed]

D. V. Murphy, R. K. Chang, “Single-Pulse Broadband Rotational Coherent Anti-Stokes Raman-Scattering Thermometry of Cold N2 Gas,” Opt. Lett. 6, 233–235 (1981).
[CrossRef] [PubMed]

M. C. Drake, “Rotational Raman Intensity-Correction Factors Due to Vibrational Anharmonicity: Their Effect on Temperature Measurements,” Opt. Lett. 7, 440–441 (1982).
[CrossRef] [PubMed]

R. E. Teets, “Accurate Convolutions of Coherent Anti-Stokes Raman Spectra,” Opt. Lett. 9, 226–228 (1984).
[CrossRef] [PubMed]

J. Zheng, J. B. Snow, D. V. Murphy, A. Leipertz, R. K. Chang, R. L. Farrow, “Experimental Comparison of Broadband Rotational Coherent Anti-Stokes Raman Scattering (CARS) and Broadband Vibrational CARS in a Flame,” Opt. Lett. 9, 341–343 (1984).
[CrossRef] [PubMed]

T. Lasser, E. Magens, A. Leipertz, “Gas Thermometry by Fourier Analysis of Rotational Coherent Anti-Stokes Raman Scattering,” Opt. Lett. 10, 535–537 (1985).
[CrossRef] [PubMed]

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348–350 (1986).
[CrossRef] [PubMed]

A. C. Eckbreth, T. J. Anderson, “Simultaneous Rotational Coherent Anti-Stokes Raman Spectroscopy and Coherent Stokes Raman Spectroscopy with Arbitrary Pump–Stokes Spectral Separation,” Opt. Lett. 11, 496–498 (1986).
[CrossRef] [PubMed]

Z. W. Li, C. Radzewicz, M. G. Raymer, “Temporal Smoothing of Multimode Dye-Laser Pulses,” Opt. Lett. 12, 416–418 (1987).
[CrossRef] [PubMed]

Phys. Rev. A (3)

G. J. Rosasco, W. S. Hurst, “Measurement of Resonant Third-Order Nonlinear Susceptibilities by Coherent Raman Spectroscopy,” Phys. Rev. A 32, 281–299 (1985).
[CrossRef]

G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Line Shifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944–1951 (1986).
[CrossRef] [PubMed]

C. Radzewics, Z. W. Li, M. G. Raymer, “Amplitude-Stabilized Chaotic Light,” Phys. Rev. A 37, 2039–2047 (1988).
[CrossRef]

Prog. Opt. (1)

A. V. Masalov, “Spectral and Temporal Fluctuations of Broadband Laser Radiation,” Prog. Opt. 22, 145–196 (1985).
[CrossRef]

Other (10)

D. R. Snelling, G. J. Smallwood, R. A. Sawchuck, “Nonlinearity and Image Persistence of P-20-Phosphor-Based Intensified Photodiode Array Detectors used in CARS Spectroscopy,” Appl. Opt. in press.

P.-E. Bengtsson, D. Nilsson, M. Aldén, S. Kröll, “Vibrational CARS Thermometry in Sooty Flames,” to be published.

S. Kröll, D. Sandell, “A Model for Calculating the Noise Due to the Stochastic Nature of Multimode Laser Radiation in Nonlinear Optical Processes,” in Proceedings, NLO’88, organized by the Society for Optical & Quantum Electronics (1988).

M. C. Drake, C. Asawaroengchai, G. M. Rosenblatt, “Temperature from Rotational and Vibrational Raman Scattering: Effects of Vibrational–Rotational Interactions and Other Corrections,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).

A. Leipertz, E. Magens, T. Lasser. “Flame Temperature Measurements Using a Novel Rotational CARS Analysis Technique,” presented at AIAA Eighteenth Fluid Dynamics and Plasma Dynamics and Laser Conference, Cincinnati, OH (16–18 July 1985).

T. Parameswaran, D. R. Snelling, “A Computer Program to Generate Theoretical Coherent Anti-Stokes Raman Spectra,” Defence Research EstablishmentOttawa, DREO Technical Note 81–18 (1982).

D. Nilsson, “Theoretical and Experimental Investigations of Rotational CARS as a Technique for Temperature Probing,” Lund Reports on Atomic Physics, LRAP-76 (1987).

S. Kröll, M. Aldén, P.-E. Bengtsson, C. Lüfström, “An Evaluation of Precision and Systematic Errors in Vibrational CARS Thermometry,” Appl. Phys. B, in press.

D. R. Crosley, Ed. “Laser Probes for Combustion Chemistry,” ACS Symposium Series 134 (American Chemical Society, Washington, DC, 1980).
[CrossRef]

A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus Press, Cambridge, MA, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Energy level diagram describing the rotational dual broadband CARS technique. The three lasers involved in the CARS generating process are in this paper generally denoted a, b, and c (from left to right in the figure). For RDBC, lasers a and b are broadband (~100 cm−1) and laser c is narrowband (~1 cm−1).

Fig. 2
Fig. 2

Theoretical rotational CARS spectra of N2 at temperatures of 300, 1300, and 2300 K.

Fig. 3
Fig. 3

Schematic representation of the different rotational CARS approaches that were investigated: (a) rotational dual broadband CARS using two different dye lasers, RDBC(2 dyes); (b) rotational dual broadband CARS using one single dye laser, RDBC(1 dye); (c) conventional rotational CARS using coumarin 500 as dye, CRC(C 500); (d) conventional rotational CARS using rhodamine 610, CRC(R 610).

Fig. 4
Fig. 4

Experimental setup used in the rotational dual broadband CARS technique utilizing two broadband dye laser beams, RDBC(2 dyes): BS = beam splitter; DM = dichroic mirror; DA = diode array; L = lens; and F = filters.

Fig. 5
Fig. 5

(a) Nonresonant CARS spectra using the dyes DCM and rhodamine 610. (b) Flame spectrum generated using rotational dual broadband CARS with DCM dye, RDBC(DCM), corrected for the limited dye laser bandwidth. The frequency scale is the same in (a) and (b).

Fig. 6
Fig. 6

Rotational dual broadband CARS spectra from a flame using DCM dye: (a) single shot and (b) 100 shots. Below each spectrum the difference between the experimental spectrum and the theoretical spectrum is shown.

Fig. 7
Fig. 7

Rotational dual broadband CARS spectrum from a CO/O2 diffusion flame indicating peaks from CO (≳100 cm−1) and CO2 (≲100 cm−1).

Fig. 8
Fig. 8

Rotational dual broadband CARS spectra of room temperature nitrogen: (a) at 1 atm and (b) at 38 atm.

Tables (6)

Tables Icon

Table I Pulse Energies for the Primary Laser Beams and the Resulting Experimental Peak Signal Strength in Room Temperature Nitrogen and at Flame Temperatures (T ≅ 1800 K) for the Different Rotational CARS Techniques

Tables Icon

Table II 100 · σ(T)/TAve is Given, Where TAve is the Average Temperature from 105 Single-Shot Measurements and σ(T) is the Standard Deviation in the Single-Shot Temperatures

Tables Icon

Table III Experimental Values Used to Calculate Theoretical Noise-to-Signal Ratios from Eq. (4) a

Tables Icon

Table IV Theoretically Calculated Noise-to-Signal Ratios Scaled by a Factor of 0.4 for Comparison with the Temperature Accuracies in Table II

Tables Icon

Table V Effects of Width Deviation of the DCM Dye on the Deduced Room Temperature

Tables Icon

Table VI Width and Width Fluctuations in Several Dyes Measured with a Quanta-Ray Nd:YAG Dye Laser System

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

I a s ( ω a s ) = | χ ( 3 ) ( ω a s , ω a , ω b , ω c ) | 2 I a ( ω a ) × I b ( ω b ) I c ( ω c ) δ ( ω a ω b + ω c ω a s ) d ω a d ω b d ω c ,
χ R ( ω ) = N ћ J 3 45 · b J J F ( J ) β υ 2 Δ ρ J J ( ω a ω b ω J ) i Γ J / 2 J a J ω a ω b ω J i Γ J 2 ,
Δ ρ J J = ( 2 J + 1 ) g J exp { [ E ( υ , J + 2 ) E ( υ , J ) ] / k T } / Q
Δ ρ J J = ( 2 J + 1 ) g J exp { [ E ( υ , J ) E ( υ , J + 2 ) ] / k T } / Q
b J J + 2 = 3 ( J + 1 ) ( J + 2 ) 2 ( 2 J + 1 ) ( 2 J + 3 ) ,
b J J 2 = 3 J ( J 1 ) 2 ( 2 J + 1 ) ( 2 J 1 ) ,
β υ = β e + β e r r e υ + 0 . 5 β e r r e υ 2 .
I a s ( ω a s ) = A ( χ N R 2 + B + 2 C ) ,
A = exp [ ( δ a s / γ ˜ 2 d ) 2 ] π γ ˜ 2 d , B = 2 π γ ˜ 2 d γ ˜ 3 γ ˜ d χ N R j a j Im [ w ( z 3 j ) ] , C = π γ ˜ 2 d 2 γ ˜ 3 γ ˜ d j , k a j a k Im [ w ( z 3 j ) + w * ( z 3 k ) Δ k j + i ( γ k + γ j ) ] , δ a s = ω a s ω a s 0 , Δ j = Ω j ( ω a 0 ω b 0 ) , Δ k j = Δ k Δ j , Ω j the Raman shift , ω a s 0 = ω a 0 ω b 0 + ω c 0 , ω a s 0 , ω a 0 , ω b 0 , ω c 0 anti-Stokes and laser center frequencies , respectively , w ( z ) the complex error function = exp ( z 2 ) [ 1 + 2 i π 0 z exp ( t 2 ) d t ] = i π exp ( t 2 ) z t d t , Im ( z ) > 0 = z 3 j = ( γ ˜ 3 γ ˜ d / γ ˜ 2 d ) 1 [ ( γ d γ 2 d ) 2 δ a s Δ j + i γ j ] , γ d = ( γ a 2 + γ b 2 ) 1 / 2 , γ 2 d = γ d 2 + γ c 2 γ ˜ = γ / ln 2 , γ a , γ b , γ c , γ j laser and Raman linewidths ( HWHM ) , respectively .
l = 1 N [ I a s t h ( ω l ) 1 N k = 1 N I a s t h ( ω k ) I a s exp ( ω l ) 1 N k = 1 N I a s exp ( ω k ) ] 2 .
I 0 = | E 1 + E 2 | 2 = e 1 2 + e 2 2 + 2 e 1 e 2 cos [ ( ω 1 ω 2 ) t + ϕ 1 ϕ 2 ] .
N c = Γ a Ω a · Γ r Ω b .
N I C = Γ a Ω a · Γ r Ω b · Γ a Ω a · 1 T Ω b , noise = N I C N C = 1 T Γ r ,
I ave ( K ) = 1 105 i = 1 105 I i ( K ) .
1 2 [ 2 π T Γ c 1 + Γ c 2 W 2 + 1 2 π Ω a Γ r ] 1 / 2 ;
[ 1 2 π Ω a Γ a + 2 π T Γ c 1 + Γ c 2 W 2 + 1 T Γ r ] 1 / 2 ;
[ 1 2 π Ω b Γ a + 2 π T Γ a ( 1 + Γ a 2 W 2 + 4 1 + Γ a 2 2 W 2 + Γ a 2 ) + 1 T Γ r ] 1 / 2 ;

Metrics