Abstract

The cavity dumping technique, applied to free electron lasers (FEL), is described. Taking advantage of both numerical simulations and experimental results on the Mark III FEL, a fairly exhaustive analysis is reported. In particular, we show that the output peak power can be increased by a factor even higher than one hundred. The cavity dumping experiment, under way on the Mark III FEL, is discussed in some detail.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cutolo, J. F. Schultz, J. M. Madey, “Non Linear Optical Devices for the Enhancement of Free Electron Lasers,” presented at Eighth International Conference on FELs, Glasgow (1–5 Sept. 1986).
  2. S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Non-Linear Intracavity Optical Devices for Free Electron Lasers,” U.S. Pat. (1986).
  3. S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
    [CrossRef]
  4. A. Cutolo, B. T. Khwri-Yakub, J. M. Madey, “Broadband Optical Cavities for Free Electron Lasers: Analysis and Preliminary Experimental Results,” Appl. Opt. 23, 2935 (1984).
    [CrossRef] [PubMed]
  5. A. Cutolo, S. V. Benson, J. M. Madey, “Acoustooptical Suppression of Sideband Instabilities in Free Electron Lasers,” Appl. Opt. 27, 3619 (1988).
    [CrossRef] [PubMed]
  6. A. Cutolo, S. V. Benson, J. M. Madey, “Tunable Electrooptic Intracavity Filter for Sideband Suppression in Free Electron Lasers,” Appl. Opt. 27, 3616 (1988).
    [CrossRef] [PubMed]
  7. A. Yariv, Quantum Electronics (Wiley, New York, 1977).
  8. L. W. Casperson, “Analytical Modeling of Gain Switched Laser I: Laser Oscillator,” J. Appl. Phys. 47, 4555 (1976).
    [CrossRef]
  9. W. R. Hook, R. H. Dishington, R. P. Hilberg, “Laser Cavity Dumping Using Time Variable Reflection,” Appl. Phys. Lett. 9, 125 (1966).
    [CrossRef]
  10. S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
    [CrossRef]
  11. S. V. Benson, “Diffractive Effects and Noise in Short Pulse FELs,” Ph.D. Dissertation, Physics Department, Stanford U. (1985).
  12. J. F. Schultz, “Optical Materials and Intracavity Optical Devices for Tuneable FELs,” Ph.D. Dissertation, Physics Department, Stanford U. (1986).
  13. A. Cutolo, J. M. Madey, “Self Induced Mismatch in Non Linear Optical Interactions,” IEEE J. Quantum Electron. QE-21, 1104 (1985).
    [CrossRef]
  14. A. Cutolo, “Transient Behavior in the Acousto-Optic Effect,” Nuovo Cimento Lett. 41, 139 (1984).
    [CrossRef]
  15. A. Cutolo, S. V. Benson, J. M. Madey, “Real Time Processing of Pico and Femto Second Laser Pulses: Application to Free Electron Lasers,” Appl. Phys. Lett. 52, 1566 (1988).
    [CrossRef]
  16. A. Bhomik, private communication
  17. B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
    [CrossRef]
  18. A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

1988 (5)

A. Cutolo, S. V. Benson, J. M. Madey, “Acoustooptical Suppression of Sideband Instabilities in Free Electron Lasers,” Appl. Opt. 27, 3619 (1988).
[CrossRef] [PubMed]

A. Cutolo, S. V. Benson, J. M. Madey, “Tunable Electrooptic Intracavity Filter for Sideband Suppression in Free Electron Lasers,” Appl. Opt. 27, 3616 (1988).
[CrossRef] [PubMed]

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, “Real Time Processing of Pico and Femto Second Laser Pulses: Application to Free Electron Lasers,” Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
[CrossRef]

1986 (1)

S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
[CrossRef]

1985 (1)

A. Cutolo, J. M. Madey, “Self Induced Mismatch in Non Linear Optical Interactions,” IEEE J. Quantum Electron. QE-21, 1104 (1985).
[CrossRef]

1984 (2)

1976 (1)

L. W. Casperson, “Analytical Modeling of Gain Switched Laser I: Laser Oscillator,” J. Appl. Phys. 47, 4555 (1976).
[CrossRef]

1966 (1)

W. R. Hook, R. H. Dishington, R. P. Hilberg, “Laser Cavity Dumping Using Time Variable Reflection,” Appl. Phys. Lett. 9, 125 (1966).
[CrossRef]

Benson, S. V.

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, “Acoustooptical Suppression of Sideband Instabilities in Free Electron Lasers,” Appl. Opt. 27, 3619 (1988).
[CrossRef] [PubMed]

A. Cutolo, S. V. Benson, J. M. Madey, “Tunable Electrooptic Intracavity Filter for Sideband Suppression in Free Electron Lasers,” Appl. Opt. 27, 3616 (1988).
[CrossRef] [PubMed]

A. Cutolo, S. V. Benson, J. M. Madey, “Real Time Processing of Pico and Femto Second Laser Pulses: Application to Free Electron Lasers,” Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
[CrossRef]

S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
[CrossRef]

S. V. Benson, “Diffractive Effects and Noise in Short Pulse FELs,” Ph.D. Dissertation, Physics Department, Stanford U. (1985).

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Non-Linear Intracavity Optical Devices for Free Electron Lasers,” U.S. Pat. (1986).

A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

Bhomik, A.

A. Bhomik, private communication

Casperson, L. W.

L. W. Casperson, “Analytical Modeling of Gain Switched Laser I: Laser Oscillator,” J. Appl. Phys. 47, 4555 (1976).
[CrossRef]

Cutolo, A.

A. Cutolo, S. V. Benson, J. M. Madey, “Tunable Electrooptic Intracavity Filter for Sideband Suppression in Free Electron Lasers,” Appl. Opt. 27, 3616 (1988).
[CrossRef] [PubMed]

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, “Acoustooptical Suppression of Sideband Instabilities in Free Electron Lasers,” Appl. Opt. 27, 3619 (1988).
[CrossRef] [PubMed]

B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, “Real Time Processing of Pico and Femto Second Laser Pulses: Application to Free Electron Lasers,” Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

A. Cutolo, J. M. Madey, “Self Induced Mismatch in Non Linear Optical Interactions,” IEEE J. Quantum Electron. QE-21, 1104 (1985).
[CrossRef]

A. Cutolo, “Transient Behavior in the Acousto-Optic Effect,” Nuovo Cimento Lett. 41, 139 (1984).
[CrossRef]

A. Cutolo, B. T. Khwri-Yakub, J. M. Madey, “Broadband Optical Cavities for Free Electron Lasers: Analysis and Preliminary Experimental Results,” Appl. Opt. 23, 2935 (1984).
[CrossRef] [PubMed]

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Non-Linear Intracavity Optical Devices for Free Electron Lasers,” U.S. Pat. (1986).

A. Cutolo, J. F. Schultz, J. M. Madey, “Non Linear Optical Devices for the Enhancement of Free Electron Lasers,” presented at Eighth International Conference on FELs, Glasgow (1–5 Sept. 1986).

A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

Dishington, R. H.

W. R. Hook, R. H. Dishington, R. P. Hilberg, “Laser Cavity Dumping Using Time Variable Reflection,” Appl. Phys. Lett. 9, 125 (1966).
[CrossRef]

Hilberg, R. P.

W. R. Hook, R. H. Dishington, R. P. Hilberg, “Laser Cavity Dumping Using Time Variable Reflection,” Appl. Phys. Lett. 9, 125 (1966).
[CrossRef]

Hook, W. R.

W. R. Hook, R. H. Dishington, R. P. Hilberg, “Laser Cavity Dumping Using Time Variable Reflection,” Appl. Phys. Lett. 9, 125 (1966).
[CrossRef]

Hooper, B.

B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

Khwri-Yakub, B. T.

Madey, J. M.

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, “Tunable Electrooptic Intracavity Filter for Sideband Suppression in Free Electron Lasers,” Appl. Opt. 27, 3616 (1988).
[CrossRef] [PubMed]

A. Cutolo, S. V. Benson, J. M. Madey, “Acoustooptical Suppression of Sideband Instabilities in Free Electron Lasers,” Appl. Opt. 27, 3619 (1988).
[CrossRef] [PubMed]

A. Cutolo, S. V. Benson, J. M. Madey, “Real Time Processing of Pico and Femto Second Laser Pulses: Application to Free Electron Lasers,” Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
[CrossRef]

S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
[CrossRef]

A. Cutolo, J. M. Madey, “Self Induced Mismatch in Non Linear Optical Interactions,” IEEE J. Quantum Electron. QE-21, 1104 (1985).
[CrossRef]

A. Cutolo, B. T. Khwri-Yakub, J. M. Madey, “Broadband Optical Cavities for Free Electron Lasers: Analysis and Preliminary Experimental Results,” Appl. Opt. 23, 2935 (1984).
[CrossRef] [PubMed]

A. Cutolo, J. F. Schultz, J. M. Madey, “Non Linear Optical Devices for the Enhancement of Free Electron Lasers,” presented at Eighth International Conference on FELs, Glasgow (1–5 Sept. 1986).

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Non-Linear Intracavity Optical Devices for Free Electron Lasers,” U.S. Pat. (1986).

A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

Marc, M.

S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
[CrossRef]

Schultz, J. F.

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
[CrossRef]

A. Cutolo, J. F. Schultz, J. M. Madey, “Non Linear Optical Devices for the Enhancement of Free Electron Lasers,” presented at Eighth International Conference on FELs, Glasgow (1–5 Sept. 1986).

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Non-Linear Intracavity Optical Devices for Free Electron Lasers,” U.S. Pat. (1986).

J. F. Schultz, “Optical Materials and Intracavity Optical Devices for Tuneable FELs,” Ph.D. Dissertation, Physics Department, Stanford U. (1986).

A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

Velghe, M.

S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
[CrossRef]

Yariv, A.

A. Yariv, Quantum Electronics (Wiley, New York, 1977).

Appl. Opt. (3)

Appl. Phys. Lett. (2)

W. R. Hook, R. H. Dishington, R. P. Hilberg, “Laser Cavity Dumping Using Time Variable Reflection,” Appl. Phys. Lett. 9, 125 (1966).
[CrossRef]

A. Cutolo, S. V. Benson, J. M. Madey, “Real Time Processing of Pico and Femto Second Laser Pulses: Application to Free Electron Lasers,” Appl. Phys. Lett. 52, 1566 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Cutolo, J. M. Madey, “Self Induced Mismatch in Non Linear Optical Interactions,” IEEE J. Quantum Electron. QE-21, 1104 (1985).
[CrossRef]

J. Appl. Phys. (1)

L. W. Casperson, “Analytical Modeling of Gain Switched Laser I: Laser Oscillator,” J. Appl. Phys. 47, 4555 (1976).
[CrossRef]

Nucl. Instrum. Methods A (3)

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Q-Switched Optical Cavities for Free Electron Lasers,” Nucl. Instrum. Methods A 272, 196 (1988).
[CrossRef]

S. V. Benson, J. M. Madey, M. Marc, M. Velghe, “The Stanford Mark III FEL,” Nucl. Instrum. Methods A 250, 39 (1986).
[CrossRef]

B. Hooper, S. V. Benson, A. Cutolo, J. M. Madey, “Experimental Results on a Two Stage Harmonic Conversion with Picosecond Pulses on the Stanford Mark III FEL,” Nucl. Instrum. Methods A 272, 96 (1988).
[CrossRef]

Nuovo Cimento Lett. (1)

A. Cutolo, “Transient Behavior in the Acousto-Optic Effect,” Nuovo Cimento Lett. 41, 139 (1984).
[CrossRef]

Other (7)

A. Bhomik, private communication

S. V. Benson, “Diffractive Effects and Noise in Short Pulse FELs,” Ph.D. Dissertation, Physics Department, Stanford U. (1985).

J. F. Schultz, “Optical Materials and Intracavity Optical Devices for Tuneable FELs,” Ph.D. Dissertation, Physics Department, Stanford U. (1986).

A. Cutolo, J. F. Schultz, J. M. Madey, “Non Linear Optical Devices for the Enhancement of Free Electron Lasers,” presented at Eighth International Conference on FELs, Glasgow (1–5 Sept. 1986).

S. V. Benson, A. Cutolo, J. F. Schultz, J. M. Madey, “Non-Linear Intracavity Optical Devices for Free Electron Lasers,” U.S. Pat. (1986).

A. Yariv, Quantum Electronics (Wiley, New York, 1977).

A. Cutolo, S. V. Benson, J. F. Schultz, B. Hooper, J. M. Madey, “Mode Characterization Autocorrelation Measurements and Harmonic Conversion with Pico and Femto Second Laser Pulses from the Mark III FEL,” Appl. Opt. in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Detuning curves of the Mark III FEL (see Table I) for different total losses of the resonator (TLoss)10,11 and for two different macropulse lengths. By total losses we mean the proper losses of the cavity (diffraction, absorption) plus the output coupling coefficient. The detuning (milliinch) is negative for longer cavities.

Fig. 2
Fig. 2

Comparison between the numerical simulation of Fig. 1 and the experimental results.9,10 Negative detuning (milliinch) corresponds to longer cavities.

Fig. 3
Fig. 3

Intracavity saturation intensity (Is) as a function of the total losses of the resonator (TLoss) for the Mark III FEL (see Table I).

Fig. 4
Fig. 4

Enhancement factor (η) of the output peak intensity [see Eq. (3)] as a function of the output coupling coefficient (q) for different values of the insertion losses of the dumper (ρc). The continuous lines refer to proper losses of the resonator p = 3% as in the Mark III FEL. For the dotted line we have ρ = 1% and ρc = 1%.

Fig. 5
Fig. 5

Schematic of the electrooptic configuration for the cavity dumped FEL. GT is the Glan-Thompson prism and P is the Pockels cell.

Fig. 6
Fig. 6

Normalized coefficients An [see Eq. (7)] for an electrooptic cavity dumper as a function of XX [see Eqs. (5) and (10)] and for α = 1 (continuous lines) and α = 3 (dotted lines). Note that, with α = 3, it is possible to couple more than 90% of the power in the first pulse also if τ ≈ 5. With a 1.5-m long optical cavity, τ ≈ 5 means t0 ≈ 50 ns.

Fig. 7
Fig. 7

Schematic of an acoustooptic configuration for a cavity dumped FEL.

Fig. 8
Fig. 8

Normalized coefficient An [see Eq. (7)] for an acoustooptic cavity dumper as a function of the normalized switching time τ.

Fig. 9
Fig. 9

Time t ¯, needed to dump the cavity, normalized to the round-trip tc as a function of the normalized switching time τ for an a acoustooptic (dotted line) and an electrooptic (continuous lines) configuration.

Fig. 10
Fig. 10

Intracavity acoustooptic output coupler (A) at Brewster angle for broadband operation. MB are the bending magnets, M1, M2, and MD are mirrors, and ϕ is the diffraction angle.

Fig. 11
Fig. 11

Schematic of the optical resonator (not to scale) design for the cavity dumping experiment under way on the Mark III FEL at Stanford. The Pockels cell (P) is made of CdTe. The Brewster plate (B) is made of calcium fluoride which, after preliminary measurements, has shown a high damage threshold, higher than that required by the Mark III FEL. MC are the convergent mirrors, MD is a divergent mirror, and MP is a plane mirror.

Tables (1)

Tables Icon

Table I Parameters Used In Simulations of the Mark III FEL

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I o = q · I s ( q + ρ ) .
I o , c = I s ( ρ + ρ c ) ,
η = I o , c I o = 1 q · I s ( ρ + ρ c ) I s ( ρ + q ) .
r ( t = 0 ) = 0 and r ( t ) = 1 .
t c = 2 L c = n · Δ t ,
E n = r ( n t c + Δ ) · ( E m = 1 n 1 E m ) ,
A n = E n / E ,
{ A n = r ( n t c ) · { 1 m = 1 n 1 A n } , A 1 = r ( t c ) .
η c = max ( A n ) · η .
V ( t ) = V 0 [ 1 exp ( t / t 0 ) ] ,
r ( t ) = sin 2 { π 2 · V 0 V π [ 1 exp ( t / t 0 ) ] } ,
V π = λ 2 n 0 3 r j i ,
t 1 = t 0 log ( α α 1 ) ,
A n = sin 2 [ π 2 α exp ( n / τ ) ] · { 1 m = 1 n 1 A m } ,
r ( t ) sinc 2 ( t m / t ) erf ( V s t / W ) ,
r ( t ) erf ( t / t 0 ) ,
A n = erf ( n / τ ) · [ 1 m = 0 n 1 A n 1 ] ,
E q T τ s ( q ) t c I s ( q + ρ ) .
E c T τ s ( q = 0 ) + t ¯ + t 0 I s ( ρ + ρ c ) ,
E c / E 1 q . t c τ s ( q = 0 ) .

Metrics