Abstract

A method of sensing vibration using the detection of changes in the spatial distribution of energy in the output of a multimode optical fiber has been demonstrated. Two implementations of the sensor have been built and tested. The first implementation involved simple optical processing of the output fiber speckle pattern using spatial filtering. The second implementation involved projecting the pattern on a CCD array and digitally processing observed changes in the intensity distribution. A mathematical model has been developed which has shown good agreement with observed sensor behavior. The sensor technique has been used to detect induced structural vibration in laboratory test specimens. Simple field testing has also demonstrated the ability of the technique to detect personnel and vehicles passing over a buried and electrically undetectable sensing cable. The sensing technique is compatible with off-the-shelf components and fiber cable and even allows for simultaneous telecommunication and sensing using the same optical fiber cable. Near term application of this technology could provide significant benefits for vibration sensing, intrusion detection, and acoustic sensing.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Aoki, S. Onoda, M. Sumi, “Measurement of Refractive-Index Profile by Vibrated Reflection Method,” Natl. Conv. Record, IECE Jpn. 4, 243–248 (1976).
  2. L. G. Cohen, “Pulse Transmission Measurements for Determining Near Optimal Profile Gratings in Multimode Borosilicate Optical Fibers,” Appl. Opt. 15, 1808–1814 (1976).
    [CrossRef] [PubMed]
  3. B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical-Fibre Waveguides,” Electron. Lett. 13, 760–765 (1977).
    [CrossRef]
  4. S. A. Kingsley, D. E. N. Davies, “Multimode Optical Fibre Phase Modulation and Discrimination I & II,” Electron. Lett. 14, 322–335 (1978).
    [CrossRef]
  5. C. Leung, I. Chang, S. Hsu, “Fiberoptic Line-Sensing System for Perimeter Protection Against Intrusion,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (1986), p. 113.
  6. N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–Mode Interference Effects in Axially Strained Few-Mode Optical Fibers,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 385–388 (1987).
  7. K. D. Bennett, R. O. Claus, M. J. Pindera, “Internal Monitoring of Acoustic Emission in Graphite-Epoxy Composites Using Embedded Optical Fiber Sensors,” in Proceedings, Review of Progress in Quantitative NDE Conference, San Diego (1986).
  8. P. M. Morse, Vibration and Sound (Acoustical Society of America, Location, 1976), Chap. IV.15.
  9. T. Okoshi, Optical Fibers (Academic, New York, 1982), Chap. 4.
  10. D. Gloge, “Weakly Guiding Fibers,” Appl. Opt. 10, 2252–2258 (1971).
    [CrossRef] [PubMed]
  11. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

1987 (1)

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–Mode Interference Effects in Axially Strained Few-Mode Optical Fibers,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 385–388 (1987).

1978 (1)

S. A. Kingsley, D. E. N. Davies, “Multimode Optical Fibre Phase Modulation and Discrimination I & II,” Electron. Lett. 14, 322–335 (1978).
[CrossRef]

1977 (1)

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical-Fibre Waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

1976 (2)

S. Aoki, S. Onoda, M. Sumi, “Measurement of Refractive-Index Profile by Vibrated Reflection Method,” Natl. Conv. Record, IECE Jpn. 4, 243–248 (1976).

L. G. Cohen, “Pulse Transmission Measurements for Determining Near Optimal Profile Gratings in Multimode Borosilicate Optical Fibers,” Appl. Opt. 15, 1808–1814 (1976).
[CrossRef] [PubMed]

1971 (1)

Aoki, S.

S. Aoki, S. Onoda, M. Sumi, “Measurement of Refractive-Index Profile by Vibrated Reflection Method,” Natl. Conv. Record, IECE Jpn. 4, 243–248 (1976).

Bennett, K. D.

K. D. Bennett, R. O. Claus, M. J. Pindera, “Internal Monitoring of Acoustic Emission in Graphite-Epoxy Composites Using Embedded Optical Fiber Sensors,” in Proceedings, Review of Progress in Quantitative NDE Conference, San Diego (1986).

Chang, I.

C. Leung, I. Chang, S. Hsu, “Fiberoptic Line-Sensing System for Perimeter Protection Against Intrusion,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (1986), p. 113.

Claus, R. O.

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–Mode Interference Effects in Axially Strained Few-Mode Optical Fibers,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 385–388 (1987).

K. D. Bennett, R. O. Claus, M. J. Pindera, “Internal Monitoring of Acoustic Emission in Graphite-Epoxy Composites Using Embedded Optical Fiber Sensors,” in Proceedings, Review of Progress in Quantitative NDE Conference, San Diego (1986).

Cohen, L. G.

Culshaw, B.

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical-Fibre Waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

Davies, D. E. N.

S. A. Kingsley, D. E. N. Davies, “Multimode Optical Fibre Phase Modulation and Discrimination I & II,” Electron. Lett. 14, 322–335 (1978).
[CrossRef]

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical-Fibre Waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

Gloge, D.

Hsu, S.

C. Leung, I. Chang, S. Hsu, “Fiberoptic Line-Sensing System for Perimeter Protection Against Intrusion,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (1986), p. 113.

Kingsley, S. A.

S. A. Kingsley, D. E. N. Davies, “Multimode Optical Fibre Phase Modulation and Discrimination I & II,” Electron. Lett. 14, 322–335 (1978).
[CrossRef]

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical-Fibre Waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

Leung, C.

C. Leung, I. Chang, S. Hsu, “Fiberoptic Line-Sensing System for Perimeter Protection Against Intrusion,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (1986), p. 113.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Morse, P. M.

P. M. Morse, Vibration and Sound (Acoustical Society of America, Location, 1976), Chap. IV.15.

Okoshi, T.

T. Okoshi, Optical Fibers (Academic, New York, 1982), Chap. 4.

Onoda, S.

S. Aoki, S. Onoda, M. Sumi, “Measurement of Refractive-Index Profile by Vibrated Reflection Method,” Natl. Conv. Record, IECE Jpn. 4, 243–248 (1976).

Pindera, M. J.

K. D. Bennett, R. O. Claus, M. J. Pindera, “Internal Monitoring of Acoustic Emission in Graphite-Epoxy Composites Using Embedded Optical Fiber Sensors,” in Proceedings, Review of Progress in Quantitative NDE Conference, San Diego (1986).

Shankaranarayanan, N. K.

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–Mode Interference Effects in Axially Strained Few-Mode Optical Fibers,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 385–388 (1987).

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Srinivas, K. T.

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–Mode Interference Effects in Axially Strained Few-Mode Optical Fibers,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 385–388 (1987).

Sumi, M.

S. Aoki, S. Onoda, M. Sumi, “Measurement of Refractive-Index Profile by Vibrated Reflection Method,” Natl. Conv. Record, IECE Jpn. 4, 243–248 (1976).

Appl. Opt. (2)

Electron. Lett. (2)

B. Culshaw, D. E. N. Davies, S. A. Kingsley, “Acoustic Sensitivity of Optical-Fibre Waveguides,” Electron. Lett. 13, 760–765 (1977).
[CrossRef]

S. A. Kingsley, D. E. N. Davies, “Multimode Optical Fibre Phase Modulation and Discrimination I & II,” Electron. Lett. 14, 322–335 (1978).
[CrossRef]

Natl. Conv. Record, IECE Jpn. (1)

S. Aoki, S. Onoda, M. Sumi, “Measurement of Refractive-Index Profile by Vibrated Reflection Method,” Natl. Conv. Record, IECE Jpn. 4, 243–248 (1976).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

N. K. Shankaranarayanan, K. T. Srinivas, R. O. Claus, “Mode–Mode Interference Effects in Axially Strained Few-Mode Optical Fibers,” Proc. Soc. Photo-Opt. Instrum. Eng. 838, 385–388 (1987).

Other (5)

K. D. Bennett, R. O. Claus, M. J. Pindera, “Internal Monitoring of Acoustic Emission in Graphite-Epoxy Composites Using Embedded Optical Fiber Sensors,” in Proceedings, Review of Progress in Quantitative NDE Conference, San Diego (1986).

P. M. Morse, Vibration and Sound (Acoustical Society of America, Location, 1976), Chap. IV.15.

T. Okoshi, Optical Fibers (Academic, New York, 1982), Chap. 4.

C. Leung, I. Chang, S. Hsu, “Fiberoptic Line-Sensing System for Perimeter Protection Against Intrusion,” in Technical Digest, Fourth International Conference on Optical Fiber Sensors, Tokyo (1986), p. 113.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Multimode optical fiber speckle emission.

Fig. 2
Fig. 2

SMS-A signal processing is accomplished using an optical spatial filter.

Fig. 3
Fig. 3

SMS-B signal processing is performed digitally by an image differentiation circuit.

Fig. 4
Fig. 4

(a) Simulated SMS-A sensor output. (b) Simulated SMS-B sensor output.

Fig. 5
Fig. 5

SMS-A: Optical spatial filtering implementation.

Fig. 6
Fig. 6

Prototype SMS-B: CCD detector implementation.

Fig. 7
Fig. 7

Effects of varying input conditions to SMS-A.

Fig. 8
Fig. 8

Effects of varying input conditions to SMS-B.

Fig. 9
Fig. 9

SMS-B output vs reference sensor output at constant frequency.

Fig. 10
Fig. 10

SMS-B output vs external perturbation frequency.

Fig. 11
Fig. 11

Layout of serpentine sensing fiber arrangement.

Fig. 12
Fig. 12

Sensor output obtained when the system depicted in Fig. 11 is perturbed.

Fig. 13
Fig. 13

Exterior testing: person walking over buried sensor.

Fig. 14
Fig. 14

Exterior testing: motorcycle passing over buried sensor.

Fig. 15
Fig. 15

Exterior testing: compact car passing over buried sensor.

Equations (28)

Equations on this page are rendered with MathJax. Learn more.

I T = i = 1 N I i = constant ,
E = m = 0 N A m B n m ( U m R ) cos ( n m θ ) exp [ i ( β m z ϕ m ) ] x ˆ ,
H = n 1 ε 0 μ 0 m = 0 N A m B n m ( U m R ) cos ( n m θ ) exp [ i ( β m z ϕ m ) ] y ˆ
= Y | E | y ˆ ,
I = 1 2 Re { E × H * z ˆ } .
I = 1 2 Y m = 0 N l = 0 N A m A l B n m ( U m R ) B n l ( U l R ) × cos ( n n θ ) cos ( n l θ ) exp [ i ( Δ β m l z Δ ϕ m l ) ] ,
I = 1 2 Y m = 0 N [ A m 2 B n m 2 ( U m R ) cos 2 ( n m θ ) + 2 l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) cos ( n m θ ) × cos ( n l θ ) cos ( Δ β m l z Δ ϕ m l ) ] .
δ ( Δ β m l z ) F ( t ) .
I = 1 2 Y m = 0 N { A m 2 B n m 2 ( U m R ) cos 2 ( n m θ ) + 2 l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) cos ( n m θ ) × cos ( n l θ ) cos [ Δ β m l z Δ ϕ m l + γ m l F ( t ) ] } ,
I = 1 2 Y m = 0 N A m 2 B n m 2 ( U m R ) cos 2 ( n m θ ) + Y m = 0 N ( l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) cos ( n m θ ) cos ( n l θ ) × { cos ( Δ β m l z Δ ϕ m l ) cos [ γ m l F ( t ) ] sin ( Δ β m l Δ ϕ m l ) sin [ γ m l F ( t ) ] } ) .
I = 1 2 Y m = 0 N A m 2 B n m 2 ( U m R ) cos 2 ( n m θ ) + Y m = 0 N l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) cos ( n m θ ) cos ( n l θ ) × [ cos ( Δ β m l z Δ ϕ m l ) γ m l F ( t ) sin ( Δ β m l Δ ϕ m l ) ] .
I i = a i I d a i ,
I i = 1 2 a i d a i Y m = 0 N A m 2 B n m 2 ( U m R ) cos 2 ( n m θ ) + a i d a i Y m = 0 N l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) × cos ( n l θ ) cos ( n m θ ) [ cos ( Δ β m l z Δ ϕ m l ) γ m l F ( t ) sin ( Δ β m l Δ ϕ m l ) ] .
I i = 1 2 a i d a i Y m = 0 N A m 2 B n m 2 ( U m R ) cos 2 ( n m θ ) + a i d a i Y m = 0 N l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) × cos ( n m θ ) cos ( n l θ ) [ cos ( Δ β m l z Δ ϕ m l ) ] F ( t ) a i d a i Y m = 0 N l = m + 1 N A m A l B n m ( U m R ) B n l ( U l R ) × cos ( n m θ ) cos ( n l θ ) [ sin ( Δ β m l z Δ ϕ m l ) ] .
I i = 1 2 Y m = 0 N A m 2 a i d a i B n m 2 ( U m R ) cos 2 ( n m θ ) + Y m = 0 N l = m + 1 N cos ( Δ β m l Δ ϕ m l ) A m A l × a i d a i B n m ( U m R ) B n l ( U l R ) cos ( n m θ ) cos ( n l θ ) F ( t ) Y m = 0 N l = m + 1 N γ m l sin ( Δ β m l z Δ ϕ m l ) A m A l × a i d a i B n m ( U m R ) B n l ( U l R ) cos ( n m θ ) cos ( n l θ ) .
= A i { 1 + B i [ cos ( δ i ) F ( t ) ϕ i sin ( δ i ) ] } .
Δ I T = i = 1 n A i B i ϕ i F ( t ) sin ( δ i )
Δ I T = i = 1 n C i F ( t ) sin ( δ i ) .
Δ I T = [ i = 1 n C i sin ( δ i ) ] F ( t ) .
Δ I T = i = 1 n | C i d F ( t ) d t sin ( δ i ) | ,
Δ I T = [ i = 1 N | C i sin ( δ i ) | ] | d F ( t ) d t | .
Δ I T = C | d F ( t ) d t | .
Δ I T = [ i = 1 n C i sin ( δ i ) ] sin ( ω t )
Δ I T = ω C | cos ( ω t ) | .
Δ I T = ω C [ 2 π + 4 π k = 1 cos ( 2 k ω t ) ( 4 k 2 1 ) ] .
I T = i = 1 n A i + i = 1 n A i B i cos ( δ i ) i = 1 n A i B i ϕ i sin ( ω t ) sin ( δ i ) .
ν n = π 21 Q κ 2 ρ β n 2 , κ = a 12 ,
{ int i , j , k ; double A [ N ] , B [ N ] , C [ N ] , PHI [ N ] , DEL [ N ] ; double sum,omg,t,tinc,ref,IT,ITA,ITB , D 1 , D 2 , t 1 ; double cos ( ) , sin ( ) , rnd ( ) , fabs ( ) ; omg = pi ; tinc = 0 .1; t = 0 . ; printf ( " The number of randomly related interfer ometers is % d \ n ", N ) ; for ( i = 0 ; i ! = N 1 ; i + + ) { A [ i ] = rnd ( 0 . 5 ; ) B [ i ] = rnd ( 1 . 0 ) ; PHI [ i ] = rnd ( pi / 8 . 0 ) ; C [ i ] = rnd ( A [ i ] * B [ i ] * PHI [ i ] ) ; DEL [ i ] = rnd ( 2 . 0 * pi ) ; } for ( j = 0 ; j ! = 21 ; j + + ) { ref = sin ( omg * ( t + 0 . 05 ) ) ; IT = 0 .; ITA = 0 .; ITB = 0 .; for ( k = 0 ; k ! = N ; k ++ ) { D 1 = A [ k ] * ( 1 . 0 + B [ k ] * cos ( PHI [ k ] * sin ( omg * t ) + DEL [ k ] ) ) ; D 2 = A [ k ] * ( 1 . 0 + B [ k ] * cos ( PHI [ k ] * sin ( omg * ( t + 0 . 1 ) ) + DEL [ k ] ) ) ; IT = IT + ( D 1 + D 2 ) / 2 . 0 ; ITA = ITA + D 2 D 1 ; ITB = ITB + fabs ( D 2 D 1 ) ; if ( k ! = 0 ) sum = IT ; } / * IT = IT / sum ; ITA = ITA / sum ; ITB = ITB / sum ; * / t 1 = t + 0 .05; print f ( " t = % f , r ef = % f , IT = % f , ITA = % f , ITB = % f / n " , t 1 , ref IT,ITA,ITB ) ; t = t + tinc ; } } double rnd ( arg ) double arg ; { double fabs ( ) , x ; int rand ( ) ; x = arg * fabs ( rand ( ) ) / 32766 ; return x ; } }

Metrics