Abstract

We discuss the procedures developed for the production and testing of multilayer x-ray mirrors on large figured optical surfaces. Methods which are generally useful for characterizing the performance of such optics are presented, as well as specific results from the production of a 25-cm diam Ritchey-Chretien telescope for a wavelength of λ = 63.5 Å. The latter is a two-mirror system, which places additional stringent requirements upon the accuracy and quality of the coatings.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).
  2. E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).
  3. H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986), pp. 412–420.
  4. C. J. Hayden, E. Spiller, “Large Area Coatings with Uniform Thickness Fabricated in a Small Vacuum Chamber,” in Technical Digest of Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 345–348; Appl. Opt. 28, 2694–2695 (1989).
    [PubMed]
  5. T. W. Barbee, “Sputtered Layered Synthetic Microstructure Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
    [CrossRef]
  6. R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–000 (1979).
    [CrossRef]
  7. E. Spiller, A. A. Rosenbluth, “Determination of Thickness Errors and Boundary Roughness from the Measured Performance of a Multilayer Coating,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 221–236 (1985); “Title,” Opt. Eng. 25, 945–963 (1986); E. Spiller, “Characterization of Multilayer Coatings by X-Ray Reflection,” Revue Phys. Appl. 23, 1687–1700 (1988).
    [CrossRef]
  8. A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1982); Revue Phys. Appl. 23, 1599–1621 (1988).
  9. L. Golub et al., “X-Ray Tests of Multilayer-Coated Optics,” Appl. Opt. 23, 3529–3533 (1984).
    [CrossRef] [PubMed]
  10. A. Segmuller, P. Krishna, L. Esaki, “X-Ray Diffraction Study of a 1-Dimensional GaAs/AlAs Superlattice,” J. Appl. Crystallogr. 10, 1–00 (1979).
    [CrossRef]
  11. R. Mewe, E. H. B. M. Gronenschild, G. H. J. van den Oord, “Calculated X-Radiation from Optically Thin Plasmas,” Astron. Astrophys. Suppl. Ser. 63, 197–253 (1985).
  12. M. P. Bruijn, “Deposition and Characterization of Multilayer X-Ray Reflection Coatings,” Thesis, FOM-Institut, Amsterdam (1986).
  13. S. V. Gaponov et al., “Influence of Interplane Roughness of the Reflectivity and Resolution of Multilayer X-Ray mirrors,” Sov. Phys. Tech. Phys. 31, 541–544 (1986).

1986 (1)

S. V. Gaponov et al., “Influence of Interplane Roughness of the Reflectivity and Resolution of Multilayer X-Ray mirrors,” Sov. Phys. Tech. Phys. 31, 541–544 (1986).

1985 (4)

R. Mewe, E. H. B. M. Gronenschild, G. H. J. van den Oord, “Calculated X-Radiation from Optically Thin Plasmas,” Astron. Astrophys. Suppl. Ser. 63, 197–253 (1985).

L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).

E. Spiller, A. A. Rosenbluth, “Determination of Thickness Errors and Boundary Roughness from the Measured Performance of a Multilayer Coating,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 221–236 (1985); “Title,” Opt. Eng. 25, 945–963 (1986); E. Spiller, “Characterization of Multilayer Coatings by X-Ray Reflection,” Revue Phys. Appl. 23, 1687–1700 (1988).
[CrossRef]

1984 (1)

1982 (1)

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1982); Revue Phys. Appl. 23, 1599–1621 (1988).

1981 (1)

T. W. Barbee, “Sputtered Layered Synthetic Microstructure Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
[CrossRef]

1979 (2)

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–000 (1979).
[CrossRef]

A. Segmuller, P. Krishna, L. Esaki, “X-Ray Diffraction Study of a 1-Dimensional GaAs/AlAs Superlattice,” J. Appl. Crystallogr. 10, 1–00 (1979).
[CrossRef]

Barbee, T. W.

T. W. Barbee, “Sputtered Layered Synthetic Microstructure Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
[CrossRef]

Bruijn, M. P.

M. P. Bruijn, “Deposition and Characterization of Multilayer X-Ray Reflection Coatings,” Thesis, FOM-Institut, Amsterdam (1986).

Esaki, L.

A. Segmuller, P. Krishna, L. Esaki, “X-Ray Diffraction Study of a 1-Dimensional GaAs/AlAs Superlattice,” J. Appl. Crystallogr. 10, 1–00 (1979).
[CrossRef]

Gaponov, S. V.

S. V. Gaponov et al., “Influence of Interplane Roughness of the Reflectivity and Resolution of Multilayer X-Ray mirrors,” Sov. Phys. Tech. Phys. 31, 541–544 (1986).

Golub, L.

L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

L. Golub et al., “X-Ray Tests of Multilayer-Coated Optics,” Appl. Opt. 23, 3529–3533 (1984).
[CrossRef] [PubMed]

Gronenschild, E. H. B. M.

R. Mewe, E. H. B. M. Gronenschild, G. H. J. van den Oord, “Calculated X-Radiation from Optically Thin Plasmas,” Astron. Astrophys. Suppl. Ser. 63, 197–253 (1985).

Haelbich, R.-P.

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–000 (1979).
[CrossRef]

Hayden, C. J.

C. J. Hayden, E. Spiller, “Large Area Coatings with Uniform Thickness Fabricated in a Small Vacuum Chamber,” in Technical Digest of Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 345–348; Appl. Opt. 28, 2694–2695 (1989).
[PubMed]

Krishna, P.

A. Segmuller, P. Krishna, L. Esaki, “X-Ray Diffraction Study of a 1-Dimensional GaAs/AlAs Superlattice,” J. Appl. Crystallogr. 10, 1–00 (1979).
[CrossRef]

Macleod, H. A.

H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986), pp. 412–420.

Mewe, R.

R. Mewe, E. H. B. M. Gronenschild, G. H. J. van den Oord, “Calculated X-Radiation from Optically Thin Plasmas,” Astron. Astrophys. Suppl. Ser. 63, 197–253 (1985).

Nystrom, G.

L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

Rosenbluth, A. A.

E. Spiller, A. A. Rosenbluth, “Determination of Thickness Errors and Boundary Roughness from the Measured Performance of a Multilayer Coating,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 221–236 (1985); “Title,” Opt. Eng. 25, 945–963 (1986); E. Spiller, “Characterization of Multilayer Coatings by X-Ray Reflection,” Revue Phys. Appl. 23, 1687–1700 (1988).
[CrossRef]

Rosenbluth, A. E.

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1982); Revue Phys. Appl. 23, 1599–1621 (1988).

Segmuller, A.

A. Segmuller, P. Krishna, L. Esaki, “X-Ray Diffraction Study of a 1-Dimensional GaAs/AlAs Superlattice,” J. Appl. Crystallogr. 10, 1–00 (1979).
[CrossRef]

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–000 (1979).
[CrossRef]

Spiller, E.

E. Spiller, A. A. Rosenbluth, “Determination of Thickness Errors and Boundary Roughness from the Measured Performance of a Multilayer Coating,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 221–236 (1985); “Title,” Opt. Eng. 25, 945–963 (1986); E. Spiller, “Characterization of Multilayer Coatings by X-Ray Reflection,” Revue Phys. Appl. 23, 1687–1700 (1988).
[CrossRef]

L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–000 (1979).
[CrossRef]

C. J. Hayden, E. Spiller, “Large Area Coatings with Uniform Thickness Fabricated in a Small Vacuum Chamber,” in Technical Digest of Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 345–348; Appl. Opt. 28, 2694–2695 (1989).
[PubMed]

van den Oord, G. H. J.

R. Mewe, E. H. B. M. Gronenschild, G. H. J. van den Oord, “Calculated X-Radiation from Optically Thin Plasmas,” Astron. Astrophys. Suppl. Ser. 63, 197–253 (1985).

Wilsczynski, J.

L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

AIP Conf. Proc. (1)

T. W. Barbee, “Sputtered Layered Synthetic Microstructure Dispersion Elements,” AIP Conf. Proc. 75, 131–145 (1981).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R.-P. Haelbich, A. Segmuller, E. Spiller, “Smooth Multilayer Films Suitable for X-Ray Mirrors,” Appl. Phys. Lett. 34, 184–000 (1979).
[CrossRef]

Astron. Astrophys. Suppl. Ser. (1)

R. Mewe, E. H. B. M. Gronenschild, G. H. J. van den Oord, “Calculated X-Radiation from Optically Thin Plasmas,” Astron. Astrophys. Suppl. Ser. 63, 197–253 (1985).

J. Appl. Crystallogr. (1)

A. Segmuller, P. Krishna, L. Esaki, “X-Ray Diffraction Study of a 1-Dimensional GaAs/AlAs Superlattice,” J. Appl. Crystallogr. 10, 1–00 (1979).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (3)

E. Spiller, A. A. Rosenbluth, “Determination of Thickness Errors and Boundary Roughness from the Measured Performance of a Multilayer Coating,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 221–236 (1985); “Title,” Opt. Eng. 25, 945–963 (1986); E. Spiller, “Characterization of Multilayer Coatings by X-Ray Reflection,” Revue Phys. Appl. 23, 1687–1700 (1988).
[CrossRef]

L. Golub, G. Nystrom, E. Spiller, J. Wilsczynski, “Construction of a Multilayered X-Ray Telescope for Solar Coronal Studies from Space,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 266–274 (1985).

E. Spiller, “Experience with the in situ Monitor System for the Fabrication of X-Ray Mirrors,” Proc. Soc. Photo-Opt. Instrum. Eng. 563, 367–375 (1985).

Reflecting Properties of X-Ray Multilayer Devices (1)

A. E. Rosenbluth, “Reflecting Properties of X-Ray Multilayer Devices,” Ph.D. Thesis, U. Rochester (1982); Revue Phys. Appl. 23, 1599–1621 (1988).

Sov. Phys. Tech. Phys. (1)

S. V. Gaponov et al., “Influence of Interplane Roughness of the Reflectivity and Resolution of Multilayer X-Ray mirrors,” Sov. Phys. Tech. Phys. 31, 541–544 (1986).

Other (3)

M. P. Bruijn, “Deposition and Characterization of Multilayer X-Ray Reflection Coatings,” Thesis, FOM-Institut, Amsterdam (1986).

H. A. Macleod, Thin-Film Optical Filters (Macmillan, New York, 1986), pp. 412–420.

C. J. Hayden, E. Spiller, “Large Area Coatings with Uniform Thickness Fabricated in a Small Vacuum Chamber,” in Technical Digest of Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 345–348; Appl. Opt. 28, 2694–2695 (1989).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the deposition system. Pulses from the x-ray detector are displayed by the multichannel analyzer (MCA) and the rate from a single channel ouput is recorded. The distance between source and rotating substrate was 106 cm for the deposition of the telescope mirrors and the substrate was tilted 10° from normal deposition.

Fig. 2
Fig. 2

Measured effective roughness σ of Co–C multilayer coatings for deposition at different tilt angles. The angle zero corresponds to normal deposition. Open symbols obtained during one deposition run with stationary substrates on Si (open circles) and float glass (open squares). The full circles are average values from all deposition runs on rotating substrates obtained for the year 1986. The straight lines represent a fit through all the open symbols.

Fig. 3
Fig. 3

Measured reflectivity of a 140-layer Co–C multilayer mirror at λ = 1.54 Å vs the grazing angle of incidence for a plane float glass mirror (a) and the primary of the telescope (b). From the curves the thickness errors in the layers and the effective roughness of the interfaces are obtained (see Ref. 7).

Fig. 4
Fig. 4

Wavelength of the reflectivity maximum at normal incidence vs the grazing angle for maximum reflectivity at λ = 1.54 Å calculated with the effective values of δ = 1 − n as given in the plot (full curve). The circles represent measured data obtained from three mirrors with synchrotron radiation from BESSY, Berlin, as in Fig. 5.

Fig. 5
Fig. 5

Measured near normal incidence reflectivity of a Co–C (140 layers) mirror deposited on float glass in the same way as the telescope mirror (points). The full curve represents Eq. (2). The measurement was made by M. Kühne, Physikalische Technische Bundesanstalt Berlin.

Fig. 6
Fig. 6

Wavelength of the reflectivity maximum of the flight mirror (primary 2) as a function of the distance from the center. These data were obtained from measurements at λ = 1.54 Å using the curve of Fig. 4. Full circles are measured directly from the telescope mirror; open circles and squares are from small planar witness mirrors (6 × 25 mm) taped to the primary during deposition. The full curve is a second degree polynomial fitted to the data points [Eq. (1)].

Fig. 7
Fig. 7

Effective area vs photon energy for the complete telescope obtained with synchrotron radiation. Also shown is the intensity of the strongest coronal emission at a plasma temperature of 2 × 106 K.

Fig. 8
Fig. 8

Reflectivity vs distance from the center of primary 2 for the two soft x-ray emission lines of the sun.

Fig. 9
Fig. 9

Reflectivity of the two solar emission lines over the edge-to-edge coordinate of the secondary mirror. Full curve for λ = 63.7 Å, dashed for λ = 63.3 Å.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ max ( Å ) = 64 . 36 0 . 01253 R 0 . 008067 R 2
R = R 0 H W 2 ( λ λ max ) 2 + H W 2 ,

Metrics