Abstract

Rugate filters are optical thin film interference structures with sinusoidal refractive index profiles. Two-wavelength reflection filters have been fabricated by codeposition of SiO2 and TiO2. Composition modulation was monitored and controlled using quartz crystal rate controllers. The resulting filters exhibited two well-defined stopbands. Microscopic examination revealed that the structure is glasslike without pronounced thin film microstructure.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. H. Southwell, “Coating Design Using Very Thin High- and Low-Index Layers,” Appl. Opt. 24, 457–460 (1985).
    [CrossRef] [PubMed]
  2. H. Sankur, W. H. Southwell, “Broadband Gradient-Index Antireflection Coating of ZnSe,” Appl. Opt. 23, 2770–2773. (1984).
    [CrossRef] [PubMed]
  3. J. A. Dobrowolski, “Comparison of the Fourier Transform and Flip-Flop Thin-Film Synthesis Method,” Appl. Opt. 25, 1966–1972 (1986).
    [CrossRef] [PubMed]
  4. T. J. R. Palmer, “Theoretical Model for Evaluating Transient Temperature Distribution in Rugate Optical Thin Film Coatings Subject to High Power Continuous Wave and Repetitive Pulsed Lasers; Part 1: Continuous Wave,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 284–294 (1984); and “Part 2: Repetitive Pulsed” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 295–299 (1984).
  5. H. Sankur, W. J. Gunning, J. F. DeNatale, “Intrinsic Stress and Structural Properties of Mixed Composition Thin Films,” Appl. Opt. 27, 1564–1567 (1988).
    [CrossRef] [PubMed]
  6. W. E. Johnson, R. L. Crane, “An Overview of Rugate Filter Technology,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 118–121.
  7. P. W. Baumeister, “Simulation of a Rugate Filter via a Stepped-Index Dielectric Multilayer,” Appl. Opt. 25, 2644–2645 (1986).
    [CrossRef] [PubMed]
  8. P. W. Baumeister, “Utilization of Kard’s Equations to Suppress the High Frequency Reflectance Bands of Periodic Multilayers,” Appl. Opt. 24, 2687–2689 (1985).
    [CrossRef] [PubMed]
  9. W. H. Southwell, “Rugate Index Profile Which Suppresses All Harmonic Stopbands,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 142–145.
  10. G. Boivin, D. St.-Germain, “Synthesis of Gradient-Index Profiles Corresponding to Spectral Reflectance Derived by Inverse Fourier Transform,” Appl. Opt. 26, 4209–4213 (1987).
    [CrossRef] [PubMed]
  11. W. H. Southwell, Rockwell International Science Center; unpublished data.
  12. B. G. Bovard, “Derivation of a Matrix Describing a Rugate Dielectric Thin Film,” Appl. Opt. 27, 1998–2005 (1988).
    [CrossRef] [PubMed]
  13. R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–98 (1975).
  14. J. E. Davison, W. E. Johnson, “A Study of Random Errors in Rugate Filters,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 134–137.
  15. D. M. Sanders, E. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng. 346, 31–38 (1982).

1988 (2)

1987 (1)

1986 (2)

1985 (2)

1984 (2)

H. Sankur, W. H. Southwell, “Broadband Gradient-Index Antireflection Coating of ZnSe,” Appl. Opt. 23, 2770–2773. (1984).
[CrossRef] [PubMed]

T. J. R. Palmer, “Theoretical Model for Evaluating Transient Temperature Distribution in Rugate Optical Thin Film Coatings Subject to High Power Continuous Wave and Repetitive Pulsed Lasers; Part 1: Continuous Wave,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 284–294 (1984); and “Part 2: Repetitive Pulsed” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 295–299 (1984).

1982 (1)

D. M. Sanders, E. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng. 346, 31–38 (1982).

1975 (1)

R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–98 (1975).

Baumeister, P. W.

Boivin, G.

Bovard, B. G.

Crane, R. L.

W. E. Johnson, R. L. Crane, “An Overview of Rugate Filter Technology,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 118–121.

Davison, J. E.

J. E. Davison, W. E. Johnson, “A Study of Random Errors in Rugate Filters,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 134–137.

DeNatale, J. F.

Dobrowolski, J. A.

Farabaugh, E. N.

D. M. Sanders, E. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng. 346, 31–38 (1982).

Gunning, W. J.

Haller, W. K.

D. M. Sanders, E. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng. 346, 31–38 (1982).

Jacobsson, R.

R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–98 (1975).

Johnson, W. E.

J. E. Davison, W. E. Johnson, “A Study of Random Errors in Rugate Filters,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 134–137.

W. E. Johnson, R. L. Crane, “An Overview of Rugate Filter Technology,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 118–121.

Palmer, T. J. R.

T. J. R. Palmer, “Theoretical Model for Evaluating Transient Temperature Distribution in Rugate Optical Thin Film Coatings Subject to High Power Continuous Wave and Repetitive Pulsed Lasers; Part 1: Continuous Wave,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 284–294 (1984); and “Part 2: Repetitive Pulsed” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 295–299 (1984).

Sanders, D. M.

D. M. Sanders, E. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng. 346, 31–38 (1982).

Sankur, H.

Southwell, W. H.

W. H. Southwell, “Coating Design Using Very Thin High- and Low-Index Layers,” Appl. Opt. 24, 457–460 (1985).
[CrossRef] [PubMed]

H. Sankur, W. H. Southwell, “Broadband Gradient-Index Antireflection Coating of ZnSe,” Appl. Opt. 23, 2770–2773. (1984).
[CrossRef] [PubMed]

W. H. Southwell, Rockwell International Science Center; unpublished data.

W. H. Southwell, “Rugate Index Profile Which Suppresses All Harmonic Stopbands,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 142–145.

St.-Germain, D.

Appl. Opt. (8)

Phys. Thin Films (1)

R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–98 (1975).

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

D. M. Sanders, E. N. Farabaugh, W. K. Haller, Proc. Soc. Photo-Opt. Instrum. Eng. 346, 31–38 (1982).

T. J. R. Palmer, “Theoretical Model for Evaluating Transient Temperature Distribution in Rugate Optical Thin Film Coatings Subject to High Power Continuous Wave and Repetitive Pulsed Lasers; Part 1: Continuous Wave,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 284–294 (1984); and “Part 2: Repetitive Pulsed” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 295–299 (1984).

Other (4)

W. H. Southwell, “Rugate Index Profile Which Suppresses All Harmonic Stopbands,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 142–145.

W. E. Johnson, R. L. Crane, “An Overview of Rugate Filter Technology,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 118–121.

J. E. Davison, W. E. Johnson, “A Study of Random Errors in Rugate Filters,” in Technical Digest, Topical Meeting on Optical Interference Coatings (Optical Society of America, Washington, DC, 1988), pp. 134–137.

W. H. Southwell, Rockwell International Science Center; unpublished data.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Two-line rugate filter: (a) refractive index profile using superposition; (b) predicted spectral reflectance.

Fig. 2
Fig. 2

Monitoring data recorded during rugate filter deposition: (a) SiO2 and TiO2 rates; (b) derived refractive index profile.

Fig. 3
Fig. 3

Two-line rugate filter transmittance: (a) calculated and (b) measured.

Fig. 4
Fig. 4

Single line rugate filter TEM cross section.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n ( x ) = n a + 1 2 n p sin ( 2 π x P ) .
BW = n p 2 n A , OD = log 10 ( 1 1 R ) = ( 1 . 36 × BW × N ) log 10 ( 4 n s ) .
n ( x ) = n a + 1 2 i = 1 L n p i sin ( 2 π x P i ) ,
n 2 = n L 2 X L + n H 2 X H ,
R L = ( n H 2 n 2 n 2 n L 2 ) R H .

Metrics