Abstract

The rugate filter employs a sinusoidal refractive index depth profile to produce high reflection in a narrow band of wavelengths. Fabrication relies on a continuously variable index of refraction in the wavelength regime of interest. The near IR refractive index of amorphous silicon–nitrogen films decreases continuously as the composition varies from pure silicon to stoichiometric silicon nitride (Si3N4). Ion implantation was found unsuitable as a fabrication method for rugate filters. Homogeneous and inhomogeneous films up to 5 μm in thickness have been produced by simultaneous deposition of electron beam evaporated silicon and of energetic nitrogen particles arising from an ion beam. The relative fluxes of beam and evaporant are found to determine the ratio of nitrogen to silicon in the films and therefore to determine the index. Single-band reflection filters of the rugate design of high peak optical density were fabricated under computer control using a quartz crystal oscillator shielded from the beam to monitor the silicon evaporation and three suppressed Faraday cups to monitor the ion beam current.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Strecker, W. Johnson, J. Davidson, “The Preparation of a SiGe Rugate Variable Index Optical Film by a Solid State Diffusion Process,” AD B099120 (1985).
  2. E. Hecht, A. Zajak, Optics (Addison-Wesley, Reading, MA, 1979).
  3. W. H. Southwell, “Use of Gradient Index for Spectral Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 464, 110–114 (1984).
  4. W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).
  5. P. Baumeister, “Simulation of a Rugate Filter Via a Stepped-Index Dielectric Multilayer,” Appl. Opt. 25, 2644–2645 (1986).
    [CrossRef] [PubMed]
  6. J. R. Palmer, “Optical Distortion of Rugate Coated Optical Components Used in High Power Laser Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 117–127 (1987).
  7. C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).
  8. B. G. Bovard, “Derivation of a Matrix describing a Rugate Dielectric Thin Film,” Appl. Opt. 27, 1998–2005 (1988).
    [CrossRef] [PubMed]
  9. O. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).
  10. G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979).
    [CrossRef]
  11. G. K. Hubler, P. R. Malmberg, T. P. Smith, “Ion-Implanted Multilayer Optical Interference Filter,” U.S. Pat.4,262,056 (1981).
  12. S. M. Rossnagel, J. J. Cuomo, “Ion-Beam-Assisted Depostion and Synthesis,” Mat. Res. Soc. Bull. 12, 40 (1987).
  13. B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
    [CrossRef]
  14. E. H. Hirsh, I. K. Varga, “Thin Film Annealing by Ion Bombardment,” Thin Solid Films 69, 99–105 (1980).
    [CrossRef]
  15. D. R. Brighton, G. K. Hubler, “Binary Collision Cascade Prediction of Critical Ion-to-Atom Arrival Ratio in the Production of Thin Films with Reduced Intrinsic Stress,” Nucl. Instrum. Methods B 28, 527–533 (1987).
    [CrossRef]
  16. W. K. Chu, J. M. Mayer, M. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).
  17. L. R. Doolittle, “Algorithms for the Rapid Simulation of Rutherford Backscattering Spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
    [CrossRef]
  18. K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
    [CrossRef]
  19. J. A. Borders, W. Beezhold, “Infrared Studies of SiC, Si3N4, and SiO2 in Ion-Implanted Silicon,” in Ion Implantation in Semiconductors, I. Ruge, J. Grawl, Eds. (Springer-Verlag, New York, 1971), p. 241.
    [CrossRef]
  20. K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).
  21. H. D. Keith, F. J. Padden, “A Phenomenological Theory of Spherulitic Crystallization,” J. Appl. Phys. 34, 2409–2421 (1963).
    [CrossRef]
  22. N. H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Elsevier, New York, 1970).
  23. E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
    [CrossRef]
  24. D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986).
    [CrossRef]

1989 (1)

K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).

1988 (1)

1987 (5)

J. R. Palmer, “Optical Distortion of Rugate Coated Optical Components Used in High Power Laser Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 117–127 (1987).

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
[CrossRef]

S. M. Rossnagel, J. J. Cuomo, “Ion-Beam-Assisted Depostion and Synthesis,” Mat. Res. Soc. Bull. 12, 40 (1987).

D. R. Brighton, G. K. Hubler, “Binary Collision Cascade Prediction of Critical Ion-to-Atom Arrival Ratio in the Production of Thin Films with Reduced Intrinsic Stress,” Nucl. Instrum. Methods B 28, 527–533 (1987).
[CrossRef]

1986 (3)

D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986).
[CrossRef]

W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).

P. Baumeister, “Simulation of a Rugate Filter Via a Stepped-Index Dielectric Multilayer,” Appl. Opt. 25, 2644–2645 (1986).
[CrossRef] [PubMed]

1985 (2)

L. R. Doolittle, “Algorithms for the Rapid Simulation of Rutherford Backscattering Spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
[CrossRef]

K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
[CrossRef]

1984 (2)

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

W. H. Southwell, “Use of Gradient Index for Spectral Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 464, 110–114 (1984).

1980 (1)

E. H. Hirsh, I. K. Varga, “Thin Film Annealing by Ion Bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

1979 (1)

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979).
[CrossRef]

1963 (1)

H. D. Keith, F. J. Padden, “A Phenomenological Theory of Spherulitic Crystallization,” J. Appl. Phys. 34, 2409–2421 (1963).
[CrossRef]

Bartholomew, C. S.

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

Baumeister, P.

Beezhold, W.

J. A. Borders, W. Beezhold, “Infrared Studies of SiC, Si3N4, and SiO2 in Ion-Implanted Silicon,” in Ion Implantation in Semiconductors, I. Ruge, J. Grawl, Eds. (Springer-Verlag, New York, 1971), p. 241.
[CrossRef]

Betz, H. T.

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

Borders, J. A.

J. A. Borders, W. Beezhold, “Infrared Studies of SiC, Si3N4, and SiO2 in Ion-Implanted Silicon,” in Ion Implantation in Semiconductors, I. Ruge, J. Grawl, Eds. (Springer-Verlag, New York, 1971), p. 241.
[CrossRef]

Bovard, B. G.

Brighton, D. R.

E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
[CrossRef]

D. R. Brighton, G. K. Hubler, “Binary Collision Cascade Prediction of Critical Ion-to-Atom Arrival Ratio in the Production of Thin Films with Reduced Intrinsic Stress,” Nucl. Instrum. Methods B 28, 527–533 (1987).
[CrossRef]

Carosella, C. A.

K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).

Chu, W. K.

W. K. Chu, J. M. Mayer, M. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).

Cuomo, J. J.

S. M. Rossnagel, J. J. Cuomo, “Ion-Beam-Assisted Depostion and Synthesis,” Mat. Res. Soc. Bull. 12, 40 (1987).

Davidson, J.

C. Strecker, W. Johnson, J. Davidson, “The Preparation of a SiGe Rugate Variable Index Optical Film by a Solid State Diffusion Process,” AD B099120 (1985).

Donovan, E. P.

K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).

E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
[CrossRef]

D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986).
[CrossRef]

Doolittle, L. R.

L. R. Doolittle, “Algorithms for the Rapid Simulation of Rutherford Backscattering Spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
[CrossRef]

Friedrich, B.

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

Futrell, J. H.

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

Grabowski, K. S.

K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).

Grieser, J. L.

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

Gunning, W. J.

W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).

Hall, R. L.

W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).

Hartshorne, N. H.

N. H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Elsevier, New York, 1970).

Heavens, O.

O. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).

Hecht, E.

E. Hecht, A. Zajak, Optics (Addison-Wesley, Reading, MA, 1979).

Hirsh, E. H.

E. H. Hirsh, I. K. Varga, “Thin Film Annealing by Ion Bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

Howard, S. L.

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

Hu, D. W.

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

Hubler, G. K.

D. R. Brighton, G. K. Hubler, “Binary Collision Cascade Prediction of Critical Ion-to-Atom Arrival Ratio in the Production of Thin Films with Reduced Intrinsic Stress,” Nucl. Instrum. Methods B 28, 527–533 (1987).
[CrossRef]

E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
[CrossRef]

D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986).
[CrossRef]

K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
[CrossRef]

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979).
[CrossRef]

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Ion-Implanted Multilayer Optical Interference Filter,” U.S. Pat.4,262,056 (1981).

Johnson, W.

C. Strecker, W. Johnson, J. Davidson, “The Preparation of a SiGe Rugate Variable Index Optical Film by a Solid State Diffusion Process,” AD B099120 (1985).

Kahn, A. D. F.

K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).

Keith, H. D.

H. D. Keith, F. J. Padden, “A Phenomenological Theory of Spherulitic Crystallization,” J. Appl. Phys. 34, 2409–2421 (1963).
[CrossRef]

Malmberg, P. R.

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979).
[CrossRef]

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Ion-Implanted Multilayer Optical Interference Filter,” U.S. Pat.4,262,056 (1981).

Mayer, J. M.

W. K. Chu, J. M. Mayer, M. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).

Murarka, N. P.

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

Nicolet, M.

W. K. Chu, J. M. Mayer, M. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).

Padden, F. J.

H. D. Keith, F. J. Padden, “A Phenomenological Theory of Spherulitic Crystallization,” J. Appl. Phys. 34, 2409–2421 (1963).
[CrossRef]

Palmer, J. R.

J. R. Palmer, “Optical Distortion of Rugate Coated Optical Components Used in High Power Laser Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 117–127 (1987).

Rockwood, A. L.

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

Rossnagel, S. M.

S. M. Rossnagel, J. J. Cuomo, “Ion-Beam-Assisted Depostion and Synthesis,” Mat. Res. Soc. Bull. 12, 40 (1987).

Sadana, D. K.

K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
[CrossRef]

Smith, T. P.

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979).
[CrossRef]

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Ion-Implanted Multilayer Optical Interference Filter,” U.S. Pat.4,262,056 (1981).

Southwell, W. H.

W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).

W. H. Southwell, “Use of Gradient Index for Spectral Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 464, 110–114 (1984).

Spence, R. A.

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

Spitzer, W. G.

K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
[CrossRef]

Strecker, C.

C. Strecker, W. Johnson, J. Davidson, “The Preparation of a SiGe Rugate Variable Index Optical Film by a Solid State Diffusion Process,” AD B099120 (1985).

Stuart, A.

N. H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Elsevier, New York, 1970).

Trafton, W. E.

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

Van Vechten, D.

E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
[CrossRef]

D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986).
[CrossRef]

Varga, I. K.

E. H. Hirsh, I. K. Varga, “Thin Film Annealing by Ion Bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

Wang, K. W.

K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
[CrossRef]

Zajak, A.

E. Hecht, A. Zajak, Optics (Addison-Wesley, Reading, MA, 1979).

Appl. Opt. (2)

Int. J. Mass Spectrom. Ion Phys. (1)

B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984).
[CrossRef]

J. Appl. Phys. (3)

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979).
[CrossRef]

K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985).
[CrossRef]

H. D. Keith, F. J. Padden, “A Phenomenological Theory of Spherulitic Crystallization,” J. Appl. Phys. 34, 2409–2421 (1963).
[CrossRef]

Mat. Res. Soc. Bull. (1)

S. M. Rossnagel, J. J. Cuomo, “Ion-Beam-Assisted Depostion and Synthesis,” Mat. Res. Soc. Bull. 12, 40 (1987).

Nucl. Instrum. Methods (1)

K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).

Nucl. Instrum. Methods B (3)

L. R. Doolittle, “Algorithms for the Rapid Simulation of Rutherford Backscattering Spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985).
[CrossRef]

E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987).
[CrossRef]

D. R. Brighton, G. K. Hubler, “Binary Collision Cascade Prediction of Critical Ion-to-Atom Arrival Ratio in the Production of Thin Films with Reduced Intrinsic Stress,” Nucl. Instrum. Methods B 28, 527–533 (1987).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

W. H. Southwell, “Use of Gradient Index for Spectral Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 464, 110–114 (1984).

W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).

J. R. Palmer, “Optical Distortion of Rugate Coated Optical Components Used in High Power Laser Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 117–127 (1987).

C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).

Thin Solid Films (1)

E. H. Hirsh, I. K. Varga, “Thin Film Annealing by Ion Bombardment,” Thin Solid Films 69, 99–105 (1980).
[CrossRef]

Vacuum (1)

D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986).
[CrossRef]

Other (7)

C. Strecker, W. Johnson, J. Davidson, “The Preparation of a SiGe Rugate Variable Index Optical Film by a Solid State Diffusion Process,” AD B099120 (1985).

E. Hecht, A. Zajak, Optics (Addison-Wesley, Reading, MA, 1979).

J. A. Borders, W. Beezhold, “Infrared Studies of SiC, Si3N4, and SiO2 in Ion-Implanted Silicon,” in Ion Implantation in Semiconductors, I. Ruge, J. Grawl, Eds. (Springer-Verlag, New York, 1971), p. 241.
[CrossRef]

W. K. Chu, J. M. Mayer, M. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).

O. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).

G. K. Hubler, P. R. Malmberg, T. P. Smith, “Ion-Implanted Multilayer Optical Interference Filter,” U.S. Pat.4,262,056 (1981).

N. H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Elsevier, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the ion beam assisted deposition (IBAD) system with the ion beam normal to the substrate surface: 1, electron beam evaporator with silicon charge; 2, Kaufman ion source with nitrogen feed gas and dual collimated extraction grids; 3, Faraday cups with secondary electron suppression; 4, quartz crystal evaporation monitor shielded from the ion beam.

Fig. 2
Fig. 2

Refractive index at 6000 cm−1 vs nitrogen from atom fraction in as-deposited films. The line is calculated using the Lorentz-Lorenz equation.

Fig. 3
Fig. 3

Film nitrogen to silicon ratio vs Rin, incident electronic charge to silicon flux ratio for 500-eV nitrogen beam assisted silicon evaporation. The line is a calculation extended from the model of Ref. 23.

Fig. 4
Fig. 4

Deposition record of a twenty-three cycle rugate filter on silicon. The Faraday cup current divided by the quartz monitor indicates that the silicon deposition rate is plotted vs the indicated integrated silicon thickness.

Fig. 5
Fig. 5

[−log10(transmission)] vs wavelength for the rugate filter in Fig. 4 after annealing at 750°C. Absorption in the substrate occurs at low wavelengths. Dashed line is calculated from Figs. 24 and a constant factor relating the average incremental film thickness to the incremental thickness deposited on the quartz monitor.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = [ 1 n S ( n L / n H ) 2 M ] / [ 1 + n S ( n L / n H ) 2 M ] 2 1 4 n S ( n L / n H ) 2 M ,
P Si ( 1 x ) N x = P Si x × ( P Si P Si 3 N 4 ) / ( 4 / 7 ) ,

Metrics