Abstract

Inhomogeneous optical interference coatings offer a potentially superior alternative to their multilayer counterparts in meeting rigid performance requirements. However, their development has been severely hampered by the lack of appropriate design software and process control hardware. The work reported in this paper involved the experimental design and fabrication of a number of inhomogeneous coatings, and some interesting results were obtained. Using customized algorithms and simultaneous codeposition techniques, an inhomogeneous antireflection coating based on germanium and thorium fluoride has been successfully produced. Attempts with other materials such as zinc sulfide were less successful because of discrepancies between predicted and actual deposition rates, and further studies are being conducted.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. I. Epstein, “The Design of Optical Filters,” J. Opt. Soc. Am. 42, 806 (1952).
    [CrossRef]
  2. W. H. Southwell, “Coating Design Using Very Thin High- and Low-Index Layers,” Appl. Opt. 24, 457–460 (1985).
    [CrossRef] [PubMed]
  3. C. K. Carniglia, “Comparison of Various Shortwave-Pass Filter Designs,” J. Opt. Soc. Am. A 4(13), P122 (1987).
  4. J. A. Dobrowolski, D. Lowe, “Optical Thin Film Synthesis Program Based on the Use of Fourier Transforms,” Appl. Opt. 17, 3039–3050 (1978).
    [CrossRef] [PubMed]
  5. FILM*STAR, FTG Software Associates, Version 3.2 (Chatham, 1986).
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).
  7. C. G. Snedacker, “New Numerical Thin-Film Synthesis Technique,” J. Opt. Soc. Am. 72, 1732A (1982).
  8. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986).
  9. R. P. Brent, Algorithms for Minimization Without Derivatives (Prentice-Hall, Englewood Cliffs, NJ, 1973), Chap. 5.
  10. R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–97 (1975).
  11. H. Sankur, W. H. Southwell, “Broadband Gradient-Index Antireflection Coating for ZnSe,” Appl. Opt. 23, 2770–2773 (1984).
    [CrossRef] [PubMed]
  12. C. J. F. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

1987

C. K. Carniglia, “Comparison of Various Shortwave-Pass Filter Designs,” J. Opt. Soc. Am. A 4(13), P122 (1987).

1985

1984

1982

C. G. Snedacker, “New Numerical Thin-Film Synthesis Technique,” J. Opt. Soc. Am. 72, 1732A (1982).

1978

1975

R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–97 (1975).

1952

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

Bottcher, C. J. F.

C. J. F. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

Brent, R. P.

R. P. Brent, Algorithms for Minimization Without Derivatives (Prentice-Hall, Englewood Cliffs, NJ, 1973), Chap. 5.

Carniglia, C. K.

C. K. Carniglia, “Comparison of Various Shortwave-Pass Filter Designs,” J. Opt. Soc. Am. A 4(13), P122 (1987).

Dobrowolski, J. A.

Epstein, L. I.

Flannery, B. P.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986).

Jacobsson, R.

R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–97 (1975).

Lowe, D.

Press, W. H.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986).

Sankur, H.

Snedacker, C. G.

C. G. Snedacker, “New Numerical Thin-Film Synthesis Technique,” J. Opt. Soc. Am. 72, 1732A (1982).

Southwell, W. H.

Teukolsky, S. A.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986).

Vetterling, W. T.

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986).

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

Appl. Opt.

J. Opt. Soc. Am.

L. I. Epstein, “The Design of Optical Filters,” J. Opt. Soc. Am. 42, 806 (1952).
[CrossRef]

C. G. Snedacker, “New Numerical Thin-Film Synthesis Technique,” J. Opt. Soc. Am. 72, 1732A (1982).

J. Opt. Soc. Am. A

C. K. Carniglia, “Comparison of Various Shortwave-Pass Filter Designs,” J. Opt. Soc. Am. A 4(13), P122 (1987).

Phys. Thin Films

R. Jacobsson, “Inhomogeneous and Coevaporated Homogeneous Films for Optical Applications,” Phys. Thin Films 8, 51–97 (1975).

Other

C. J. F. Bottcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1952).

FILM*STAR, FTG Software Associates, Version 3.2 (Chatham, 1986).

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1964).

W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U. P., New York, 1986).

R. P. Brent, Algorithms for Minimization Without Derivatives (Prentice-Hall, Englewood Cliffs, NJ, 1973), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Organization chart of the thin film design and control software.

Fig. 2
Fig. 2

Refractive index profile before refinement.

Fig. 3
Fig. 3

Refractive index profile after refinement.

Fig. 4
Fig. 4

Refractive index profile of a conventional multilayer antireflection coating.

Fig. 5
Fig. 5

Internal transmittance characteristics of multilayer inhomogeneous coating designs with the same optical thickness.

Fig. 6
Fig. 6

Internal transmittance characteristics of an inhomogeneous Ge-ThF4 coating design, a corresponding experimental coating, and the same coating corrected for calibration offset.

Fig. 7
Fig. 7

Deposition rates of two codepositing materials in a typical inhomogeneous coating run.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

M = P i C i S i .
P i = P i 1 C i ;
S i = C i 1 S i 1 ;
S 1 = C 1 1 M ;
P 1 = I .
g ( t f ) = Σ i w i ( t i f i ) 2 Σ i w i ,

Metrics