Abstract

The study of guided waves in a thin layer allows a precise characterization of refractive index and thickness. Optical anisotropy can also be measured. We show how this technique can be applied to the characterization of a multilayer structure.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
    [CrossRef] [PubMed]
  2. F. Flory, B. Schmitt, E. Pelletier, H. A. Macleod, “Interpretation of Wide Band Scans of Growing Optical Thin Films in Terms of Layer Microstructure,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 109–116 (1983).
  3. J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive Index and Inhomogeneity of Thin Films,” Appl. Opt. 23, 3567–3570 (1984).
    [CrossRef] [PubMed]
  4. P. Roche, E. Pelletier, “Characterizations of Optical Surfaces by Measurement of Scattering Distribution,” Appl. Opt. 23, 3561–3566 (1984).
    [CrossRef] [PubMed]
  5. J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
    [CrossRef]
  6. M. Commandre, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of Absorption Losses of Optical Thin Film Components by Photothermal Deflection Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 128–135 (1987).
  7. R. Ulrich, R. Torge, “Measurement of Thin Film Parameters with a Prism Coupler,” Appl. Opt. 12, 2901–2908 (1973); M. Olivier, “Guided-Wave Optical Spectroscopy of Thin Films,” NATO Advanced Study: “New Directions in Guided Waves and Coherent Optics,”Cargèse, 5–7 July 1982.
    [CrossRef] [PubMed]
  8. F. Horowitz, “Structure-Induced Optical Anisotropy in Thin Film,” Ph.D., U. Arizona, Optical Sciences Center (1983).
  9. A. Preisinger, H. K. Pulker, “Properties of ZnS Films Evaporated in High Vacuum,” J. Appl. Phys. Suppl. 2, Pt. 1, (1974).
  10. P. J. Martin, “Review: Ion Based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–0 (1986); F. Flory, G. Albrand, C. Montelymard, E. Pelletier, “Optical Study of the Growth of Ta2O5 and SiO2 Layers Obtained by Ion Assisted Deposition,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 248–253 (1986).
    [CrossRef]
  11. B. Schmitt, J. P. Borgogno, G. Albrand, E. Pelletier, “In Situ and Air Index Measurements: Influence of the Deposition Parameters on the Shift of TiO2/SiO2 Fabry-Perot Filters,” Appl. Opt. 25, 3909–3915 (1986).
    [CrossRef] [PubMed]
  12. P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
    [CrossRef]

1987 (1)

M. Commandre, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of Absorption Losses of Optical Thin Film Components by Photothermal Deflection Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 128–135 (1987).

1986 (2)

P. J. Martin, “Review: Ion Based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–0 (1986); F. Flory, G. Albrand, C. Montelymard, E. Pelletier, “Optical Study of the Growth of Ta2O5 and SiO2 Layers Obtained by Ion Assisted Deposition,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 248–253 (1986).
[CrossRef]

B. Schmitt, J. P. Borgogno, G. Albrand, E. Pelletier, “In Situ and Air Index Measurements: Influence of the Deposition Parameters on the Shift of TiO2/SiO2 Fabry-Perot Filters,” Appl. Opt. 25, 3909–3915 (1986).
[CrossRef] [PubMed]

1984 (2)

1983 (2)

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

F. Flory, B. Schmitt, E. Pelletier, H. A. Macleod, “Interpretation of Wide Band Scans of Growing Optical Thin Films in Terms of Layer Microstructure,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 109–116 (1983).

1982 (1)

1974 (1)

A. Preisinger, H. K. Pulker, “Properties of ZnS Films Evaporated in High Vacuum,” J. Appl. Phys. Suppl. 2, Pt. 1, (1974).

1973 (1)

1972 (1)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Albrand, G.

Bertrand, L.

M. Commandre, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of Absorption Losses of Optical Thin Film Components by Photothermal Deflection Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 128–135 (1987).

Borgogno, J. P.

Bousquet, P.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Commandre, M.

M. Commandre, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of Absorption Losses of Optical Thin Film Components by Photothermal Deflection Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 128–135 (1987).

Flory, F.

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive Index and Inhomogeneity of Thin Films,” Appl. Opt. 23, 3567–3570 (1984).
[CrossRef] [PubMed]

F. Flory, B. Schmitt, E. Pelletier, H. A. Macleod, “Interpretation of Wide Band Scans of Growing Optical Thin Films in Terms of Layer Microstructure,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 109–116 (1983).

Fornier, A.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Horowitz, F.

F. Horowitz, “Structure-Induced Optical Anisotropy in Thin Film,” Ph.D., U. Arizona, Optical Sciences Center (1983).

Kowalczyk, R.

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Lazarides, B.

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

Macleod, H. A.

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive Index and Inhomogeneity of Thin Films,” Appl. Opt. 23, 3567–3570 (1984).
[CrossRef] [PubMed]

F. Flory, B. Schmitt, E. Pelletier, H. A. Macleod, “Interpretation of Wide Band Scans of Growing Optical Thin Films in Terms of Layer Microstructure,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 109–116 (1983).

Martin, P. J.

P. J. Martin, “Review: Ion Based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–0 (1986); F. Flory, G. Albrand, C. Montelymard, E. Pelletier, “Optical Study of the Growth of Ta2O5 and SiO2 Layers Obtained by Ion Assisted Deposition,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 248–253 (1986).
[CrossRef]

Pelletier, E.

M. Commandre, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of Absorption Losses of Optical Thin Film Components by Photothermal Deflection Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 128–135 (1987).

B. Schmitt, J. P. Borgogno, G. Albrand, E. Pelletier, “In Situ and Air Index Measurements: Influence of the Deposition Parameters on the Shift of TiO2/SiO2 Fabry-Perot Filters,” Appl. Opt. 25, 3909–3915 (1986).
[CrossRef] [PubMed]

P. Roche, E. Pelletier, “Characterizations of Optical Surfaces by Measurement of Scattering Distribution,” Appl. Opt. 23, 3561–3566 (1984).
[CrossRef] [PubMed]

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive Index and Inhomogeneity of Thin Films,” Appl. Opt. 23, 3567–3570 (1984).
[CrossRef] [PubMed]

F. Flory, B. Schmitt, E. Pelletier, H. A. Macleod, “Interpretation of Wide Band Scans of Growing Optical Thin Films in Terms of Layer Microstructure,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 109–116 (1983).

J. P. Borgogno, B. Lazarides, E. Pelletier, “Automatic Determination of the Optical Constants of Inhomogeneous Thin Films,” Appl. Opt. 21, 4020–4029 (1982).
[CrossRef] [PubMed]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Preisinger, A.

A. Preisinger, H. K. Pulker, “Properties of ZnS Films Evaporated in High Vacuum,” J. Appl. Phys. Suppl. 2, Pt. 1, (1974).

Pulker, H. K.

A. Preisinger, H. K. Pulker, “Properties of ZnS Films Evaporated in High Vacuum,” J. Appl. Phys. Suppl. 2, Pt. 1, (1974).

Roche, P.

J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod, “Refractive Index and Inhomogeneity of Thin Films,” Appl. Opt. 23, 3567–3570 (1984).
[CrossRef] [PubMed]

P. Roche, E. Pelletier, “Characterizations of Optical Surfaces by Measurement of Scattering Distribution,” Appl. Opt. 23, 3561–3566 (1984).
[CrossRef] [PubMed]

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

Schmitt, B.

Torge, R.

Ulrich, R.

Appl. Opt. (5)

J. Appl. Phys. Suppl. (1)

A. Preisinger, H. K. Pulker, “Properties of ZnS Films Evaporated in High Vacuum,” J. Appl. Phys. Suppl. 2, Pt. 1, (1974).

J. Mater. Sci. (1)

P. J. Martin, “Review: Ion Based Methods for Optical Thin Film Deposition,” J. Mater. Sci. 21, 1–0 (1986); F. Flory, G. Albrand, C. Montelymard, E. Pelletier, “Optical Study of the Growth of Ta2O5 and SiO2 Layers Obtained by Ion Assisted Deposition,” Proc. Soc. Photo-Opt. Instrum. Eng. 652, 248–253 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

F. Flory, B. Schmitt, E. Pelletier, H. A. Macleod, “Interpretation of Wide Band Scans of Growing Optical Thin Films in Terms of Layer Microstructure,” Proc. Soc. Photo-Opt. Instrum. Eng. 401, 109–116 (1983).

M. Commandre, L. Bertrand, G. Albrand, E. Pelletier, “Measurement of Absorption Losses of Optical Thin Film Components by Photothermal Deflection Spectroscopy,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 128–135 (1987).

Thin Solid Films (2)

P. Bousquet, A. Fornier, R. Kowalczyk, E. Pelletier, P. Roche, “Optical Filters: Monitoring Process Allowing the Auto-Correction of Thickness Errors,” Thin Solid Films 13, 285–290 (1972); H. A. Macleod, “Turning Value Monitoring of Narrow-Band All-Dielectric Thin-Film Optical Filters,” Opt. Acta 19, 1–28 (1972).
[CrossRef]

J. P. Borgogno, B. Lazarides, P. Roche, “An Improved Method for the Determination of the Extinction Coefficient of Thin Film Materials,” Thin Solid Films 102, 209–220 (1983).
[CrossRef]

Other (1)

F. Horowitz, “Structure-Induced Optical Anisotropy in Thin Film,” Ph.D., U. Arizona, Optical Sciences Center (1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Prism coupling and measurement of effective indices of the guide.

Fig. 2
Fig. 2

Basic equations used for calculation of the refractive index and thickness of the layer from the measured angles synchronous to the propagating modes. After Ulrich and Torge.7

Fig. 3
Fig. 3

Characterization of a zinc sulfide layer by guided waves. For each of the five TE modes, the dependence of the refractive index n on the thickness d appears as a straight line. The desired solution corresponds to the intersection of the bundle of lines.

Fig. 4
Fig. 4

Columnar structure model (after Horowitz and Macleod8). For the calculations of anisotropy, the three principal indices of refraction are n1, n2, and n3. With this model, n3 is in the columnar growth direction.

Fig. 5
Fig. 5

Diagram showing the geometry of the evaporation from a source. For the studies of anisotropy, the substrates are placed in the plane PP′ which contains the normal to the substrates and source.

Fig. 6
Fig. 6

Geometry of the evaporation from a source. With the substrate 0 which is used for the monitoring we coated four substrates which are placed along the Oy axis. The front view xOz corresponds to the plane PP′ of Fig. 5.

Tables (6)

Tables Icon

Table I Measurement of Anisotropy: TiO2, ZnS, and Ta2O5 Layers Produced by Ion Assisted Depositiona

Tables Icon

Table II Measurements of Anisotropy of Zinc Sulfide Layers Simultaneously Deposited on Four Different Substratesa

Tables Icon

Table III Measurements of Anisotropy of Layers of Titanium Oxide Simultaneously Deposited on Three Different Substratesa

Tables Icon

Table IV Measurements of Anisotropy of Titanium Oxide Layersa

Tables Icon

Table V Determination of Anisotropy of a TiO2 Layer Sandwiched Between SiO2 Layers; The Angle of Incidence of the Vapor Flux is 19°

Tables Icon

Table VI Triple Halfwave Filter Characterized by Guided Wavesa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

S m = n p sin { A p + arcsin [ ( n o / n p ) sin θ m ] } ,
δ n 1 δ n 2 = 0 . 010 .
glass ( H L H L 2 H L H L H ) L ( H L H L 2 H L H L H ) L ( H L H L 2 H L H L H ) L air .

Metrics