Abstract

Reflectance measurements made on an Fe film over a wide range of angles of incidence are curve-fitted to extract the optical constants n and k. Problems with surface oxide layers are eliminated by making the reflectance measurements through the substrate. The experimental uncertainties of n and k are determined by a rigorous χ2 analysis. The experimentally determined optical constants are found to be considerably larger than values found in the literature.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Aspnes, “The Accurate Determination of Optical Properties by Ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, FL, 1985), Chap. 5.
  2. P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
    [CrossRef]
  3. R. Allen, G. A. N. Connell, “Magneto-Optic Properties of Amorphous Terbium-Iron,” J. Appl. Phys. 53, 2353–2335 (1982).
    [CrossRef]
  4. S. S. So, K. Vedam, “Generalized Ellipsometric Method for the Absorbing Substrate Covered with a Transparent-Film System. Optical Constants of Silicon at 3655 A,” J. Opt. Soc. Am. 62, 16–23 (1972).
    [CrossRef]
  5. O. Hunderi, “On the Problems of Multiple Overlayers in Ellipsometry and a New Look at Multiple Angle of Incidence Ellipsometry,” Surf. Sci. 61, 515–520 (1976).
    [CrossRef]
  6. D. L. Windt et al., “Optical Constants for Thin Films of C, Diamond, Al, Si, and CVD SiC from 24 Å to 1216 Å,” Appl. Opt. 27, 279–295 (1988).
    [CrossRef] [PubMed]
  7. W. H. Press et al., Numerical Recipes, the Art of Scientific Computing (Cambridge U.P., Cambridge, 1986), Chap. 10.
  8. J. Kranz, H. Stremme, “Measurements of the Longitudinal Magnetooptic Kerr Reflection of a Simple Multilayer,” IEEE Trans. Magn. MAG-5, 453–457 (1969).
    [CrossRef]
  9. J. H. Weaver et al., “Low-Energy Interband Absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850–3856 (1979).
    [CrossRef]

1988 (1)

1982 (1)

R. Allen, G. A. N. Connell, “Magneto-Optic Properties of Amorphous Terbium-Iron,” J. Appl. Phys. 53, 2353–2335 (1982).
[CrossRef]

1979 (1)

J. H. Weaver et al., “Low-Energy Interband Absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850–3856 (1979).
[CrossRef]

1976 (1)

O. Hunderi, “On the Problems of Multiple Overlayers in Ellipsometry and a New Look at Multiple Angle of Incidence Ellipsometry,” Surf. Sci. 61, 515–520 (1976).
[CrossRef]

1974 (1)

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

1972 (1)

1969 (1)

J. Kranz, H. Stremme, “Measurements of the Longitudinal Magnetooptic Kerr Reflection of a Simple Multilayer,” IEEE Trans. Magn. MAG-5, 453–457 (1969).
[CrossRef]

Allen, R.

R. Allen, G. A. N. Connell, “Magneto-Optic Properties of Amorphous Terbium-Iron,” J. Appl. Phys. 53, 2353–2335 (1982).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, “The Accurate Determination of Optical Properties by Ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, FL, 1985), Chap. 5.

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Connell, G. A. N.

R. Allen, G. A. N. Connell, “Magneto-Optic Properties of Amorphous Terbium-Iron,” J. Appl. Phys. 53, 2353–2335 (1982).
[CrossRef]

Hunderi, O.

O. Hunderi, “On the Problems of Multiple Overlayers in Ellipsometry and a New Look at Multiple Angle of Incidence Ellipsometry,” Surf. Sci. 61, 515–520 (1976).
[CrossRef]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Kranz, J.

J. Kranz, H. Stremme, “Measurements of the Longitudinal Magnetooptic Kerr Reflection of a Simple Multilayer,” IEEE Trans. Magn. MAG-5, 453–457 (1969).
[CrossRef]

Press, W. H.

W. H. Press et al., Numerical Recipes, the Art of Scientific Computing (Cambridge U.P., Cambridge, 1986), Chap. 10.

So, S. S.

Stremme, H.

J. Kranz, H. Stremme, “Measurements of the Longitudinal Magnetooptic Kerr Reflection of a Simple Multilayer,” IEEE Trans. Magn. MAG-5, 453–457 (1969).
[CrossRef]

Vedam, K.

Weaver, J. H.

J. H. Weaver et al., “Low-Energy Interband Absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850–3856 (1979).
[CrossRef]

Windt, D. L.

Appl. Opt. (1)

IEEE Trans. Magn. (1)

J. Kranz, H. Stremme, “Measurements of the Longitudinal Magnetooptic Kerr Reflection of a Simple Multilayer,” IEEE Trans. Magn. MAG-5, 453–457 (1969).
[CrossRef]

J. Appl. Phys. (1)

R. Allen, G. A. N. Connell, “Magneto-Optic Properties of Amorphous Terbium-Iron,” J. Appl. Phys. 53, 2353–2335 (1982).
[CrossRef]

J. Opt. Soc. Am. (1)

Phys. Rev. B (2)

J. H. Weaver et al., “Low-Energy Interband Absorption in bcc Fe and hcp Co,” Phys. Rev. B 19, 3850–3856 (1979).
[CrossRef]

P. B. Johnson, R. W. Christy, “Optical Constants of Transition Metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9, 5056–5070 (1974).
[CrossRef]

Surf. Sci. (1)

O. Hunderi, “On the Problems of Multiple Overlayers in Ellipsometry and a New Look at Multiple Angle of Incidence Ellipsometry,” Surf. Sci. 61, 515–520 (1976).
[CrossRef]

Other (2)

W. H. Press et al., Numerical Recipes, the Art of Scientific Computing (Cambridge U.P., Cambridge, 1986), Chap. 10.

D. E. Aspnes, “The Accurate Determination of Optical Properties by Ellipsometry,” in Handbook of Optical Constants of Solids, E. D. Palik, Ed. (Academic, Orlando, FL, 1985), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Substrate illumination technique. To minimize multiple reflections, the hemispherical lens and sample substrate have approximately the same refractive index.

Fig. 2
Fig. 2

Experimental system. The gear system which rotates the sample and detection optics is not shown.

Fig. 3
Fig. 3

Theoretical and experimental reflectance for the case of an uncoated substrate. The excellent agreement between theory (solid lines) and experimental data verify the model validity.

Fig. 4
Fig. 4

Results on an evaporated Fe film. The solid lines represent normalized experimental data (top curve for s-polarization, bottom curve for p-polarization), and the dashed lines represent best fit curves to the data. The rms error for this data set was ~0.3%.

Fig. 5
Fig. 5

Confidence level contour plot. The innermost contour level represents the 68% joint probability confidence level. The uncertainties in n and k are found by projecting the contour onto the n and k axes, respectively.

Tables (1)

Tables Icon

Table I Optical Constants of Fe at 632.8 nm

Metrics