Abstract

We have prepared and studied seventeen thin films ranging in composition from pure silver to pure magnesium fluoride. Using mass thicknesses based on quartz crystal oscillators and physical thicknesses obtained from a stylus profilometer, we have measured the void volume fraction of the films as a function of their composition. We have shown the Ag–MgF2 system to be capable of incorporating a high volume fraction of voids. We report on the results of electron microscope studies of the films, which show the dependence of film microstructure on composition, thickness, and the nature of its substrate.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
    [CrossRef]
  2. V. V. Truong, G. D. Scott, “Light Scattering from Aggregated Noble-Metal Films,” J. Opt. Soc. Am. 68, 189–193 (1978).
    [CrossRef]
  3. J. M. Bennett et al., “Relation Between Optical Scattering, Microstructure and Topography of Thin Silver Films. 1: Optical Scattering and Topography,” Appl. Opt. 24, 2701–2711 (1985).
    [CrossRef] [PubMed]
  4. S. Yamaguchi, “The Resonance Type Absorption of Very Thin Silver and Gold Films,” J. Phys. Soc. Jpn, 15, 1577–1585 (1960),
    [CrossRef]
  5. S. Yoshida, T. Yamaguchi, A. Kinbara, “Optical Properties of Aggregated Silver Films,” J. Opt. Soc. Am. 61, 62–69 (1971).
    [CrossRef]
  6. T. Yamaguchi, S. Yoshida, A. Kinbara, “Effect of the Dipole Interaction Between Island Particles on the Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13, 261–264 (1972).
    [CrossRef]
  7. G. Rasigni, P. Rouard, “On the Variation with Wavelength of the Optical Constants of Thin Metallic Films,” J. Opt. Soc. Am. 53, 604–612 (1963).
    [CrossRef]
  8. C. G. Granqvist, O. Hunderi, “Optical Properties of Ag–SiO2 Cermet Films: A Comparison of Effective-Medium Theories,” Phys. Rev. B. 18, 2897–2906 (1978).
    [CrossRef]
  9. B. Abeles, J. I. Gittleman, “Composite Material Films: Optical Properties and Applications,” Appl. Opt. 15, 2328–2332 (1976).
    [CrossRef] [PubMed]
  10. D. Evans, “Optical Properties of Coevaporated AgSiOx Cermet Films,” Phys. Rev. B. 32, 4169–4177 (1985).
    [CrossRef]
  11. P. H. Lissberger, R. G. Nelson, “Optical Properties of Thin Film Au–MgF2 Cermets,” Thin Solid Films 21, 159–172 (1974).
    [CrossRef]
  12. E. Elizalde, P. Gadenne, M. L. Theye, “Determination of the Optical Thickness and of the Filling Factor of Discontinuous Au Films from Photometric and Ellipsometric Measurements,” Opt. Commun. 60, 378–382 (1986).
    [CrossRef]
  13. R. C. McPhedran, L. C. Botten, D. R. McKenzie, R. P. Netterfield, “Unambiguous Determination of Optical Constants of Absorbing Films by Reflectance and Transmittance Measurements,” Appl. Opt. 23, 1197–1205 (1984).
    [CrossRef] [PubMed]
  14. L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1970) pp. 162, 244–247.
  15. R. E. Weast, Ed. Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1983) pp. B-136, E-380.
  16. R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
    [CrossRef]
  17. E. G. Thwaite, “Surface Topography Measurement and Analysis,” Aust. J. Phys. 35, 777–784 (1982).
  18. V. D. Scott, G. Love, Eds. Quantitative Electronprobe Microanalysis (Ellis Horwood, Sussex, U.K.1983).
  19. S. J. B. Reed, Electron Microprobe Analysis (Cambridge U. P., London, 1975).
  20. E. B. Priestley, B. Abeles, R. W. Cohen, “Surface Plasmons in Granular Ag–SiO2 Films,” Phys. Rev. B, 12, 2121–2124 (1975).
    [CrossRef]
  21. M. Gandais, V. Nguyen Van, S. Fisson, “Etude de Surfaces de Couches Minces d’Argent par Microscopie Electronique,” Thin Solid Films 15, 233–247 (1973).
    [CrossRef]
  22. S. L. Sharma, J. Spitz, “Hillock Formation, Hole Growth and Agglomeration in Thin Silver Films,” Thin Solid Films 65, 339–350 (1980).
    [CrossRef]
  23. G. S. A. Shawki, M. G. El-Sherbiny, F. B. Salem, “Nucleation and Interface Formation in Thin Films,” Thin Solid Films, 75, 29–36 (1981).
    [CrossRef]
  24. J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
    [CrossRef] [PubMed]
  25. T. Yamaguchi, S. Yoshida, A. Kinbara, “Optical Effect of the Substrate on the Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21, 173–187 (1974).
    [CrossRef]
  26. R. S. Sennett, G. D. Scott, “The Structure of Evaporated Metal Films and Their Optical Properties,” J. Opt. Soc. Am., 40, 203–211 (1950).
    [CrossRef]
  27. J. L. Robins, A. J. Donohue, “An Experimental Study of the Growth Kinetics of Vapour-Deposited Thin Metal Films,” Thin Solid Films 12, 255–259 (1972).
    [CrossRef]
  28. M. J. Stowell, “Nucleation of Au and Ag on Alkali Halide Substrates,” Thin Solid Films, 21, 91–105 (1974).
    [CrossRef]
  29. H. H. Hurt, J. M. Bennett, “Relation Between Optical Scattering, Microstructure, and Topography of Thin Silver Films 2: Microstructure,” Appl. Opt. 24, 2712–2720 (1985).
    [CrossRef] [PubMed]
  30. B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
    [CrossRef]

1986

E. Elizalde, P. Gadenne, M. L. Theye, “Determination of the Optical Thickness and of the Filling Factor of Discontinuous Au Films from Photometric and Ellipsometric Measurements,” Opt. Commun. 60, 378–382 (1986).
[CrossRef]

1985

J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
[CrossRef] [PubMed]

D. Evans, “Optical Properties of Coevaporated AgSiOx Cermet Films,” Phys. Rev. B. 32, 4169–4177 (1985).
[CrossRef]

H. H. Hurt, J. M. Bennett, “Relation Between Optical Scattering, Microstructure, and Topography of Thin Silver Films 2: Microstructure,” Appl. Opt. 24, 2712–2720 (1985).
[CrossRef] [PubMed]

J. M. Bennett et al., “Relation Between Optical Scattering, Microstructure and Topography of Thin Silver Films. 1: Optical Scattering and Topography,” Appl. Opt. 24, 2701–2711 (1985).
[CrossRef] [PubMed]

1984

1982

E. G. Thwaite, “Surface Topography Measurement and Analysis,” Aust. J. Phys. 35, 777–784 (1982).

1981

G. S. A. Shawki, M. G. El-Sherbiny, F. B. Salem, “Nucleation and Interface Formation in Thin Films,” Thin Solid Films, 75, 29–36 (1981).
[CrossRef]

1980

S. L. Sharma, J. Spitz, “Hillock Formation, Hole Growth and Agglomeration in Thin Silver Films,” Thin Solid Films 65, 339–350 (1980).
[CrossRef]

1978

C. G. Granqvist, O. Hunderi, “Optical Properties of Ag–SiO2 Cermet Films: A Comparison of Effective-Medium Theories,” Phys. Rev. B. 18, 2897–2906 (1978).
[CrossRef]

V. V. Truong, G. D. Scott, “Light Scattering from Aggregated Noble-Metal Films,” J. Opt. Soc. Am. 68, 189–193 (1978).
[CrossRef]

1976

1975

B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
[CrossRef]

E. B. Priestley, B. Abeles, R. W. Cohen, “Surface Plasmons in Granular Ag–SiO2 Films,” Phys. Rev. B, 12, 2121–2124 (1975).
[CrossRef]

1974

M. J. Stowell, “Nucleation of Au and Ag on Alkali Halide Substrates,” Thin Solid Films, 21, 91–105 (1974).
[CrossRef]

P. H. Lissberger, R. G. Nelson, “Optical Properties of Thin Film Au–MgF2 Cermets,” Thin Solid Films 21, 159–172 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, “Optical Effect of the Substrate on the Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

1973

M. Gandais, V. Nguyen Van, S. Fisson, “Etude de Surfaces de Couches Minces d’Argent par Microscopie Electronique,” Thin Solid Films 15, 233–247 (1973).
[CrossRef]

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
[CrossRef]

1972

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, “Effect of the Dipole Interaction Between Island Particles on the Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

J. L. Robins, A. J. Donohue, “An Experimental Study of the Growth Kinetics of Vapour-Deposited Thin Metal Films,” Thin Solid Films 12, 255–259 (1972).
[CrossRef]

1971

1963

1960

S. Yamaguchi, “The Resonance Type Absorption of Very Thin Silver and Gold Films,” J. Phys. Soc. Jpn, 15, 1577–1585 (1960),
[CrossRef]

1950

Abeles, B.

B. Abeles, J. I. Gittleman, “Composite Material Films: Optical Properties and Applications,” Appl. Opt. 15, 2328–2332 (1976).
[CrossRef] [PubMed]

E. B. Priestley, B. Abeles, R. W. Cohen, “Surface Plasmons in Granular Ag–SiO2 Films,” Phys. Rev. B, 12, 2121–2124 (1975).
[CrossRef]

B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
[CrossRef]

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
[CrossRef]

Arie, Y.

B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
[CrossRef]

Bednorz, J. G.

J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
[CrossRef] [PubMed]

Bennett, J. M.

Botten, L. C.

Clapham, P. B.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

Cody, G. D.

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
[CrossRef]

Cohen, R. W.

E. B. Priestley, B. Abeles, R. W. Cohen, “Surface Plasmons in Granular Ag–SiO2 Films,” Phys. Rev. B, 12, 2121–2124 (1975).
[CrossRef]

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
[CrossRef]

Coutts, M. D.

B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
[CrossRef]

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
[CrossRef]

Donohue, A. J.

J. L. Robins, A. J. Donohue, “An Experimental Study of the Growth Kinetics of Vapour-Deposited Thin Metal Films,” Thin Solid Films 12, 255–259 (1972).
[CrossRef]

Downs, M. J.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

Elizalde, E.

E. Elizalde, P. Gadenne, M. L. Theye, “Determination of the Optical Thickness and of the Filling Factor of Discontinuous Au Films from Photometric and Ellipsometric Measurements,” Opt. Commun. 60, 378–382 (1986).
[CrossRef]

El-Sherbiny, M. G.

G. S. A. Shawki, M. G. El-Sherbiny, F. B. Salem, “Nucleation and Interface Formation in Thin Films,” Thin Solid Films, 75, 29–36 (1981).
[CrossRef]

Evans, D.

D. Evans, “Optical Properties of Coevaporated AgSiOx Cermet Films,” Phys. Rev. B. 32, 4169–4177 (1985).
[CrossRef]

Fisson, S.

M. Gandais, V. Nguyen Van, S. Fisson, “Etude de Surfaces de Couches Minces d’Argent par Microscopie Electronique,” Thin Solid Films 15, 233–247 (1973).
[CrossRef]

Gadenne, P.

E. Elizalde, P. Gadenne, M. L. Theye, “Determination of the Optical Thickness and of the Filling Factor of Discontinuous Au Films from Photometric and Ellipsometric Measurements,” Opt. Commun. 60, 378–382 (1986).
[CrossRef]

Gandais, M.

M. Gandais, V. Nguyen Van, S. Fisson, “Etude de Surfaces de Couches Minces d’Argent par Microscopie Electronique,” Thin Solid Films 15, 233–247 (1973).
[CrossRef]

Gimzewski, J. K.

J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
[CrossRef] [PubMed]

Gittleman, J. I.

Granqvist, C. G.

C. G. Granqvist, O. Hunderi, “Optical Properties of Ag–SiO2 Cermet Films: A Comparison of Effective-Medium Theories,” Phys. Rev. B. 18, 2897–2906 (1978).
[CrossRef]

Holland, L.

L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1970) pp. 162, 244–247.

Humbert, A.

J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
[CrossRef] [PubMed]

Hunderi, O.

C. G. Granqvist, O. Hunderi, “Optical Properties of Ag–SiO2 Cermet Films: A Comparison of Effective-Medium Theories,” Phys. Rev. B. 18, 2897–2906 (1978).
[CrossRef]

Hurt, H. H.

Kinbara, A.

T. Yamaguchi, S. Yoshida, A. Kinbara, “Optical Effect of the Substrate on the Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, “Effect of the Dipole Interaction Between Island Particles on the Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

S. Yoshida, T. Yamaguchi, A. Kinbara, “Optical Properties of Aggregated Silver Films,” J. Opt. Soc. Am. 61, 62–69 (1971).
[CrossRef]

King, R. J.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

Lissberger, P. H.

P. H. Lissberger, R. G. Nelson, “Optical Properties of Thin Film Au–MgF2 Cermets,” Thin Solid Films 21, 159–172 (1974).
[CrossRef]

McKenzie, D. R.

McPhedran, R. C.

Nelson, R. G.

P. H. Lissberger, R. G. Nelson, “Optical Properties of Thin Film Au–MgF2 Cermets,” Thin Solid Films 21, 159–172 (1974).
[CrossRef]

Netterfield, R. P.

Nguyen Van, V.

M. Gandais, V. Nguyen Van, S. Fisson, “Etude de Surfaces de Couches Minces d’Argent par Microscopie Electronique,” Thin Solid Films 15, 233–247 (1973).
[CrossRef]

Priestley, E. B.

E. B. Priestley, B. Abeles, R. W. Cohen, “Surface Plasmons in Granular Ag–SiO2 Films,” Phys. Rev. B, 12, 2121–2124 (1975).
[CrossRef]

Raine, K. W.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

Rasigni, G.

Reed, S. J. B.

S. J. B. Reed, Electron Microprobe Analysis (Cambridge U. P., London, 1975).

Reihl, B.

J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
[CrossRef] [PubMed]

Robins, J. L.

J. L. Robins, A. J. Donohue, “An Experimental Study of the Growth Kinetics of Vapour-Deposited Thin Metal Films,” Thin Solid Films 12, 255–259 (1972).
[CrossRef]

Rouard, P.

Salem, F. B.

G. S. A. Shawki, M. G. El-Sherbiny, F. B. Salem, “Nucleation and Interface Formation in Thin Films,” Thin Solid Films, 75, 29–36 (1981).
[CrossRef]

Scott, G. D.

Sennett, R. S.

Sharma, S. L.

S. L. Sharma, J. Spitz, “Hillock Formation, Hole Growth and Agglomeration in Thin Silver Films,” Thin Solid Films 65, 339–350 (1980).
[CrossRef]

Shawki, G. S. A.

G. S. A. Shawki, M. G. El-Sherbiny, F. B. Salem, “Nucleation and Interface Formation in Thin Films,” Thin Solid Films, 75, 29–36 (1981).
[CrossRef]

Sheng, Ping

B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
[CrossRef]

Spitz, J.

S. L. Sharma, J. Spitz, “Hillock Formation, Hole Growth and Agglomeration in Thin Silver Films,” Thin Solid Films 65, 339–350 (1980).
[CrossRef]

Stowell, M. J.

M. J. Stowell, “Nucleation of Au and Ag on Alkali Halide Substrates,” Thin Solid Films, 21, 91–105 (1974).
[CrossRef]

Talim, S. P.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

Theye, M. L.

E. Elizalde, P. Gadenne, M. L. Theye, “Determination of the Optical Thickness and of the Filling Factor of Discontinuous Au Films from Photometric and Ellipsometric Measurements,” Opt. Commun. 60, 378–382 (1986).
[CrossRef]

Thwaite, E. G.

E. G. Thwaite, “Surface Topography Measurement and Analysis,” Aust. J. Phys. 35, 777–784 (1982).

Truong, V. V.

Yamaguchi, S.

S. Yamaguchi, “The Resonance Type Absorption of Very Thin Silver and Gold Films,” J. Phys. Soc. Jpn, 15, 1577–1585 (1960),
[CrossRef]

Yamaguchi, T.

T. Yamaguchi, S. Yoshida, A. Kinbara, “Optical Effect of the Substrate on the Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, “Effect of the Dipole Interaction Between Island Particles on the Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

S. Yoshida, T. Yamaguchi, A. Kinbara, “Optical Properties of Aggregated Silver Films,” J. Opt. Soc. Am. 61, 62–69 (1971).
[CrossRef]

Yoshida, S.

T. Yamaguchi, S. Yoshida, A. Kinbara, “Optical Effect of the Substrate on the Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, “Effect of the Dipole Interaction Between Island Particles on the Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

S. Yoshida, T. Yamaguchi, A. Kinbara, “Optical Properties of Aggregated Silver Films,” J. Opt. Soc. Am. 61, 62–69 (1971).
[CrossRef]

Adv. Phys.

B. Abeles, Ping Sheng, M. D. Coutts, Y. Arie, “Structural and Electrical Properties of Granular Metal Films,” Adv. Phys. 24, 407–461 (1975).
[CrossRef]

Appl. Opt.

Aust. J. Phys.

E. G. Thwaite, “Surface Topography Measurement and Analysis,” Aust. J. Phys. 35, 777–784 (1982).

J. Opt. Soc. Am.

J. Phys. E.

R. J. King, M. J. Downs, P. B. Clapham, K. W. Raine, S. P. Talim, “A Comparison of Methods for Accurate Film Thickness Measurement,” J. Phys. E. 5, 445–449 (1972).
[CrossRef]

J. Phys. Soc. Jpn

S. Yamaguchi, “The Resonance Type Absorption of Very Thin Silver and Gold Films,” J. Phys. Soc. Jpn, 15, 1577–1585 (1960),
[CrossRef]

Opt. Commun.

E. Elizalde, P. Gadenne, M. L. Theye, “Determination of the Optical Thickness and of the Filling Factor of Discontinuous Au Films from Photometric and Ellipsometric Measurements,” Opt. Commun. 60, 378–382 (1986).
[CrossRef]

Phys. Rev. B

E. B. Priestley, B. Abeles, R. W. Cohen, “Surface Plasmons in Granular Ag–SiO2 Films,” Phys. Rev. B, 12, 2121–2124 (1975).
[CrossRef]

Phys. Rev. B.

D. Evans, “Optical Properties of Coevaporated AgSiOx Cermet Films,” Phys. Rev. B. 32, 4169–4177 (1985).
[CrossRef]

C. G. Granqvist, O. Hunderi, “Optical Properties of Ag–SiO2 Cermet Films: A Comparison of Effective-Medium Theories,” Phys. Rev. B. 18, 2897–2906 (1978).
[CrossRef]

R. W. Cohen, G. D. Cody, M. D. Coutts, B. Abeles, “Optical Properties of Granular Silver and Gold Films,” Phys. Rev. B. 8, 3689–3701 (1973).
[CrossRef]

Phys. Rev. Lett.

J. K. Gimzewski, A. Humbert, J. G. Bednorz, B. Reihl, “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of their Surface Topography,” Phys. Rev. Lett. 55, 951–954 (1985).
[CrossRef] [PubMed]

Thin Solid Films

T. Yamaguchi, S. Yoshida, A. Kinbara, “Optical Effect of the Substrate on the Anomalous Absorption of Aggregated Silver Films,” Thin Solid Films 21, 173–187 (1974).
[CrossRef]

P. H. Lissberger, R. G. Nelson, “Optical Properties of Thin Film Au–MgF2 Cermets,” Thin Solid Films 21, 159–172 (1974).
[CrossRef]

M. Gandais, V. Nguyen Van, S. Fisson, “Etude de Surfaces de Couches Minces d’Argent par Microscopie Electronique,” Thin Solid Films 15, 233–247 (1973).
[CrossRef]

S. L. Sharma, J. Spitz, “Hillock Formation, Hole Growth and Agglomeration in Thin Silver Films,” Thin Solid Films 65, 339–350 (1980).
[CrossRef]

G. S. A. Shawki, M. G. El-Sherbiny, F. B. Salem, “Nucleation and Interface Formation in Thin Films,” Thin Solid Films, 75, 29–36 (1981).
[CrossRef]

T. Yamaguchi, S. Yoshida, A. Kinbara, “Effect of the Dipole Interaction Between Island Particles on the Optical Properties of an Aggregated Silver Film,” Thin Solid Films 13, 261–264 (1972).
[CrossRef]

J. L. Robins, A. J. Donohue, “An Experimental Study of the Growth Kinetics of Vapour-Deposited Thin Metal Films,” Thin Solid Films 12, 255–259 (1972).
[CrossRef]

M. J. Stowell, “Nucleation of Au and Ag on Alkali Halide Substrates,” Thin Solid Films, 21, 91–105 (1974).
[CrossRef]

Other

L. Holland, Vacuum Deposition of Thin Films (Chapman & Hall, London, 1970) pp. 162, 244–247.

R. E. Weast, Ed. Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1983) pp. B-136, E-380.

V. D. Scott, G. Love, Eds. Quantitative Electronprobe Microanalysis (Ellis Horwood, Sussex, U.K.1983).

S. J. B. Reed, Electron Microprobe Analysis (Cambridge U. P., London, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the deposition system. QCO denotes quartz crystal oscillator, L the source substrate distance and α the average angle of incidence of vapor onto the substrate.

Fig. 2
Fig. 2

Step thickness tt as a function of mass thickness ti for the films of Table I.

Fig. 3
Fig. 3

Void volume fraction fυ as a function of the silver volume fraction fi defined in Eq. (1).

Fig. 4
Fig. 4

Electron micrographs and corresponding diffraction patterns of silver films showing the effect of the substrate. AG9P was prepared on a polymer substrate (parlodion) while AG9n was prepared in the same run on NaCl.

Fig. 5
Fig. 5

From top to bottom: bright field micrograph, dark field micrograph [(111) and (200) rings] and diffraction pattern for a silver film prepared on amorphous carbon (ti = 5 nm) (AG28C).

Fig. 6
Fig. 6

From top to bottom: bright field micrographs, dark field micrographs and diffraction patterns of a silver film 10.2-nm thick. The left-hand figures refer to a film (AG18c) prepared on amorphous carbon while the right-hand figures refer to a film (AG18n) prepared on NaCl.

Fig. 7
Fig. 7

From top to bottom: bright field micrographs, dark field micrographs and diffraction patterns of a silver film 25-nm thick. The left-hand figures refer to a film (AG26c) prepared on amorphous carbon while the right-hand figures refer to a film (AG26n) prepared on NaCl.

Fig. 8
Fig. 8

Bright field micrographs for pure magnesium fluoride (MG17c, with diffraction pattern), a low-volume fraction cermet (MAG16c), a medium volume fraction cermet (MAGl5c), a high-volume fraction cermet (MAG14c) and pure silver (AG9p).

Fig. 9
Fig. 9

Diffraction pattern and bright field image of a Ag–MgF2 cermet with fi = 0.66. Note the preferred orientation in the MgF2 component.

Fig. 10
Fig. 10

Bright field image and two dark field images of the same region of the cermet film of Fig. 9. The first dark field image is formed from electrons diffracted from (110) planes of MgF2. The second dark field image is formed from electrons diffracted from (111) and (002) planes of silver, as well as (101), (111) and (210) planes of MgF2.

Tables (2)

Tables Icon

Table I Deposition and Composition Data for Seventeen Thin Films (tl—mass thickness; rl—rate of deposition; fl—bulk volume fraction of silver; tt—step thickness; fv—volume fraction of voids)

Tables Icon

Table II Deposition and Composition Data for Six Thick Films (tl—mass thickness; rl—rate of deposition; fl—bulk volume fraction of silver, tt—step thickness; tF—Fizeau thickness; fp—volume fraction of silver determined by electron probe microanalysis).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f i = t i , A / ( t i , A + t i , M ) .
f υ = ( t t t i ) / t t .
f A = t i , A / t t ; f M = t i . M / t t ,

Metrics