Abstract

Due to its poor visibility additive type moire is seldom used in spite of its simplicity. By means of computer image processing, the visibility of additive moire can be improved in real time to that of subtractive type moire. Experimental results for moire topography show that the additive type moire is no longer an inadequate method.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Idesawa, T. Yatagai, T. Soma, “Scanning Moire Method and Automatic Measurement of 3-D Shapes,” Appl. Opt. 16, 2152–2162 (1977).
    [CrossRef] [PubMed]
  2. O. Bryngdahl, “Characteristics of Superposed Patterns in Optics,” J. Opt. Soc. Am. 66, 87–94 (1976).
    [CrossRef]
  3. J. Der Hovanesian, Y. Y. Hung, “Moire Contour-Sum Contour-Difference, and Vibration Analysis of Arbitrary Objects,” Appl. Opt. 10, 2734–2738 (1971).
    [CrossRef]
  4. Y. Yoshino, H. Takasaki, “Doubling and Visibility Enhancement of Moire Fringes of the Summation Type,” Apl. Opt. 15, 1124–1126 (1976).
    [CrossRef]
  5. D. M. Meadows, W. O. Johnson, J. B. Allen, “Generation of Surface Contours by Moire Patterns,” Appl. Opt. 9, 942–947 (1970).
    [CrossRef] [PubMed]
  6. H. Takasaki, “Moire Topography,” Appl. Opt. 9, 1467–1472 (1970).
    [CrossRef] [PubMed]
  7. H. Takasaki, “Moire Topography,” Appl. Opt. 12, 845–850 (1973).
    [CrossRef] [PubMed]
  8. P. Dunbar, “Machine Vision,” Byte161–173 (Jan.1986).
  9. R. C. Gonzalez, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1977).
  10. K. J. Gasvik, “Moire Technique by Means of Digital Image Processing,” Appl. Opt. 22, 3543–3548 (1983)
    [CrossRef] [PubMed]

1986 (1)

P. Dunbar, “Machine Vision,” Byte161–173 (Jan.1986).

1983 (1)

1977 (1)

1976 (2)

O. Bryngdahl, “Characteristics of Superposed Patterns in Optics,” J. Opt. Soc. Am. 66, 87–94 (1976).
[CrossRef]

Y. Yoshino, H. Takasaki, “Doubling and Visibility Enhancement of Moire Fringes of the Summation Type,” Apl. Opt. 15, 1124–1126 (1976).
[CrossRef]

1973 (1)

1971 (1)

1970 (2)

Allen, J. B.

Bryngdahl, O.

Der Hovanesian, J.

Dunbar, P.

P. Dunbar, “Machine Vision,” Byte161–173 (Jan.1986).

Gasvik, K. J.

Gonzalez, R. C.

R. C. Gonzalez, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1977).

Hung, Y. Y.

Idesawa, M.

Johnson, W. O.

Meadows, D. M.

Soma, T.

Takasaki, H.

Y. Yoshino, H. Takasaki, “Doubling and Visibility Enhancement of Moire Fringes of the Summation Type,” Apl. Opt. 15, 1124–1126 (1976).
[CrossRef]

H. Takasaki, “Moire Topography,” Appl. Opt. 12, 845–850 (1973).
[CrossRef] [PubMed]

H. Takasaki, “Moire Topography,” Appl. Opt. 9, 1467–1472 (1970).
[CrossRef] [PubMed]

Wintz, P.

R. C. Gonzalez, P. Wintz, Digital Image Processing (Addison-Wesley, Reading, MA, 1977).

Yatagai, T.

Yoshino, Y.

Y. Yoshino, H. Takasaki, “Doubling and Visibility Enhancement of Moire Fringes of the Summation Type,” Apl. Opt. 15, 1124–1126 (1976).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Two types of superimposition.

Fig. 2
Fig. 2

Gray level transformation function for additive moire fringe enhancement.

Fig. 3
Fig. 3

Experimental arrangement for image processing of additive type moire.

Fig. 4
Fig. 4

Additive moire fringes and the gray level profile.

Fig. 5
Fig. 5

Transformed moire fringes and the gray level profile.

Fig. 6
Fig. 6

Additive moire fringes for a dummy body: (a) original; (b) transformed.

Fig. 7
Fig. 7

Additive moire fringes for a real hand: (a) original; (b) transformed.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I 1 = a + b cos 2 π ν 1 x ;
I 2 = c + d cos 2 π ν 2 x ;
I 1 + I 2 = a + c + ( b + d ) cos π ( ν 1 + ν 2 ) x cos π ( ν 1 ν 2 ) x ( b d ) sin π ( ν 1 + ν 2 ) x sin π ( ν 1 ν 2 ) x .
I 1 + I 2 = A + B cos π ( ν 1 + ν 2 ) x cos π ( ν 1 ν 2 ) x ,
I 1 I 2 = a c B sin π ( ν 1 + ν 2 ) x sin π ( ν 1 ν 2 ) x .
I out = | 1 B ( I in A ) | ,

Metrics