Abstract

Computations indicate that a synthetic aperture laser imaging system can provide images with 10-cm resolution at satellite ranges using a 10-W cw laser. When imaging satellites from the ground, the synthetic aperture system reduces atmospheric degradations. The system uses 20-cm diam receiver optics. The low laser power is made possible by using separate transmitter and receiver optics and coded pulses with a 50% transmitter duty cycle. The coded pulses are derived from Hadamard matrices for which there is an efficient algorithm to transform the received data into images. The synthetic aperture yields spatial resolutions independent of range, and the coded pulses result in an effective range dependence of r−2 instead of r−4.

© 1989 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. M. Brown, L. J. Porcello, “An Introduction to Synthetic-Aperture Radar,” IEEE Spectrum 52 (Sept.1969).
  2. C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
    [CrossRef]
  3. B. C. Barber, “Theory of Digital Imaging from Orbital Synthetic-Aperture Radar,” Int. J. Remote Sensing 6, 1009 (1985).
    [CrossRef]
  4. T. S. Lewis, H. S. Hutchins, “A Synthetic Aperture at 10.6 Microns,” Proc. IEEE 58, 1781 (1970).
    [CrossRef]
  5. C. C. Aleksoff et al., “Synthetic Aperture Imaging with a Pulsed CO2 Laser,” Proc. Soc. Photo-Opt. Instrum. Eng. 783, 29 (1987).
  6. R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).
  7. K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
    [CrossRef]
  8. K. F. Hulme, “CO2 Heterodyne Rangefinders, Velocimeters and Radars,” Infrared Phys. 25, 457 (1985).
    [CrossRef]
  9. C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982).
    [CrossRef]
  10. R. O. Harger, Synthetic Aperture Radar Systems (Academic, New York, 1970).
  11. M. Harwit, M. J. Sloane, Hadamard Transform Optics (Academic, New York, 1979).
  12. E. D. Nelson, M. L. Fredman, “Hadamard Spectroscopy,” J. Opt. Soc. Am. 60, 1664 (1970).
    [CrossRef]
  13. E. E. Fenimore, “Large Symmetric π Transformations for Hadamard Transforms,” Appl. Opt. 22, 826–829 (1983).
    [CrossRef] [PubMed]
  14. R. E. Roberts, J. E. A. Selby, L. M. Biberman, “Infrared Continuum Absorption by Atmospheric Water Vapor in the 8–12-μm Window,” Appl. Opt. 15, 2085–2090 (1976).
    [CrossRef] [PubMed]
  15. B. A. Stephan, “Field Tests and Performance Analysis of a Heterodyne CO2 Laser Radar,” Proc. Soc. Photo-Opt. Instrum. Eng. 590, 388 (1985).
  16. J. F. Shanley, C. T. Flanagan, “Wide Bandwidth, High-Sensitivity Hg0.8Cd0.2Te Photodiodes for Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 123 (1980).
  17. J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).
  18. T. A. Nussmeier, R. L. Abrams, “Stark Cell Stabilization of CO2 Laser,” Appl. Phys. Lett. 25, 615 (1974).
    [CrossRef]
  19. G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
    [CrossRef]
  20. A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

1987 (2)

C. C. Aleksoff et al., “Synthetic Aperture Imaging with a Pulsed CO2 Laser,” Proc. Soc. Photo-Opt. Instrum. Eng. 783, 29 (1987).

R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).

1985 (4)

K. F. Hulme, “CO2 Heterodyne Rangefinders, Velocimeters and Radars,” Infrared Phys. 25, 457 (1985).
[CrossRef]

B. C. Barber, “Theory of Digital Imaging from Orbital Synthetic-Aperture Radar,” Int. J. Remote Sensing 6, 1009 (1985).
[CrossRef]

B. A. Stephan, “Field Tests and Performance Analysis of a Heterodyne CO2 Laser Radar,” Proc. Soc. Photo-Opt. Instrum. Eng. 590, 388 (1985).

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

1983 (1)

1982 (2)

C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
[CrossRef]

C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982).
[CrossRef]

1981 (1)

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
[CrossRef]

1980 (1)

J. F. Shanley, C. T. Flanagan, “Wide Bandwidth, High-Sensitivity Hg0.8Cd0.2Te Photodiodes for Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 123 (1980).

1978 (1)

G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

1976 (1)

1974 (1)

T. A. Nussmeier, R. L. Abrams, “Stark Cell Stabilization of CO2 Laser,” Appl. Phys. Lett. 25, 615 (1974).
[CrossRef]

1970 (2)

E. D. Nelson, M. L. Fredman, “Hadamard Spectroscopy,” J. Opt. Soc. Am. 60, 1664 (1970).
[CrossRef]

T. S. Lewis, H. S. Hutchins, “A Synthetic Aperture at 10.6 Microns,” Proc. IEEE 58, 1781 (1970).
[CrossRef]

1969 (1)

W. M. Brown, L. J. Porcello, “An Introduction to Synthetic-Aperture Radar,” IEEE Spectrum 52 (Sept.1969).

Abrams, R. L.

T. A. Nussmeier, R. L. Abrams, “Stark Cell Stabilization of CO2 Laser,” Appl. Phys. Lett. 25, 615 (1974).
[CrossRef]

Aleksoff, C. C.

C. C. Aleksoff et al., “Synthetic Aperture Imaging with a Pulsed CO2 Laser,” Proc. Soc. Photo-Opt. Instrum. Eng. 783, 29 (1987).

Barber, B. C.

B. C. Barber, “Theory of Digital Imaging from Orbital Synthetic-Aperture Radar,” Int. J. Remote Sensing 6, 1009 (1985).
[CrossRef]

Biberman, L. M.

Bicknell, T.

C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
[CrossRef]

Brown, W. M.

W. M. Brown, L. J. Porcello, “An Introduction to Synthetic-Aperture Radar,” IEEE Spectrum 52 (Sept.1969).

Carter, G. M.

G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

Collins, B. S.

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
[CrossRef]

Consortini, A.

A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

Constant, G. D.

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
[CrossRef]

Depannemaecker, J. C.

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

Elachi, C.

C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
[CrossRef]

Fenimore, E. E.

Flanagan, C. T.

J. F. Shanley, C. T. Flanagan, “Wide Bandwidth, High-Sensitivity Hg0.8Cd0.2Te Photodiodes for Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 123 (1980).

Fleury, J.

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

Fredman, M. L.

Harger, R. O.

R. O. Harger, Synthetic Aperture Radar Systems (Academic, New York, 1970).

Harwit, M.

M. Harwit, M. J. Sloane, Hadamard Transform Optics (Academic, New York, 1979).

Herlemont, F.

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

Hulme, K. F.

K. F. Hulme, “CO2 Heterodyne Rangefinders, Velocimeters and Radars,” Infrared Phys. 25, 457 (1985).
[CrossRef]

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
[CrossRef]

Hutchins, H. S.

T. S. Lewis, H. S. Hutchins, “A Synthetic Aperture at 10.6 Microns,” Proc. IEEE 58, 1781 (1970).
[CrossRef]

Jin, M.

C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982).
[CrossRef]

Jordan, R. L.

C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
[CrossRef]

Kerr, J. L.

R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).

Lemaire, J.

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

Lewis, T. S.

T. S. Lewis, H. S. Hutchins, “A Synthetic Aperture at 10.6 Microns,” Proc. IEEE 58, 1781 (1970).
[CrossRef]

Liu, K. Y.

C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982).
[CrossRef]

McDonough, R. N.

R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).

Nelson, E. D.

Nussmeier, T. A.

T. A. Nussmeier, R. L. Abrams, “Stark Cell Stabilization of CO2 Laser,” Appl. Phys. Lett. 25, 615 (1974).
[CrossRef]

Pandolfini, P.

A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

Pinson, J. T.

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
[CrossRef]

Porcello, L. J.

W. M. Brown, L. J. Porcello, “An Introduction to Synthetic-Aperture Radar,” IEEE Spectrum 52 (Sept.1969).

Raff, B. E.

R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).

Riant, Yu.

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

Roberts, R. E.

Ronchi, L.

A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

Selby, J. E. A.

Shanley, J. F.

J. F. Shanley, C. T. Flanagan, “Wide Bandwidth, High-Sensitivity Hg0.8Cd0.2Te Photodiodes for Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 123 (1980).

Sloane, M. J.

M. Harwit, M. J. Sloane, Hadamard Transform Optics (Academic, New York, 1979).

Stephan, B. A.

B. A. Stephan, “Field Tests and Performance Analysis of a Heterodyne CO2 Laser Radar,” Proc. Soc. Photo-Opt. Instrum. Eng. 590, 388 (1985).

Vanni, R.

A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

Wu, C.

C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982).
[CrossRef]

C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

T. A. Nussmeier, R. L. Abrams, “Stark Cell Stabilization of CO2 Laser,” Appl. Phys. Lett. 25, 615 (1974).
[CrossRef]

G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978).
[CrossRef]

IEEE Spectrum (1)

W. M. Brown, L. J. Porcello, “An Introduction to Synthetic-Aperture Radar,” IEEE Spectrum 52 (Sept.1969).

IEEE Trans. Aerosp. Electron. Syst. (1)

C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982).
[CrossRef]

Infrared Phys. (1)

K. F. Hulme, “CO2 Heterodyne Rangefinders, Velocimeters and Radars,” Infrared Phys. 25, 457 (1985).
[CrossRef]

Int. J. Remote Sensing (1)

B. C. Barber, “Theory of Digital Imaging from Orbital Synthetic-Aperture Radar,” Int. J. Remote Sensing 6, 1009 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

Johns Hopkins APL Tech. Dig. (1)

R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).

Opt. Opt. Quantum Electron. (1)

K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981).
[CrossRef]

Proc. IEEE (2)

T. S. Lewis, H. S. Hutchins, “A Synthetic Aperture at 10.6 Microns,” Proc. IEEE 58, 1781 (1970).
[CrossRef]

C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (4)

C. C. Aleksoff et al., “Synthetic Aperture Imaging with a Pulsed CO2 Laser,” Proc. Soc. Photo-Opt. Instrum. Eng. 783, 29 (1987).

B. A. Stephan, “Field Tests and Performance Analysis of a Heterodyne CO2 Laser Radar,” Proc. Soc. Photo-Opt. Instrum. Eng. 590, 388 (1985).

J. F. Shanley, C. T. Flanagan, “Wide Bandwidth, High-Sensitivity Hg0.8Cd0.2Te Photodiodes for Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 123 (1980).

J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).

Other (3)

A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

R. O. Harger, Synthetic Aperture Radar Systems (Academic, New York, 1970).

M. Harwit, M. J. Sloane, Hadamard Transform Optics (Academic, New York, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics