Abstract

A method using the Talbot effect and a moire technique to measure the refractive index of transparent materials is described for a plane-parallel plate and a liquid. Experimental verification has been carried out. The method can measure both high and low refractive indices. An accuracy of 5 units to the fifth decimal place can be achieved.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. D. Bloss, Introduction to the Methods of Optical Crystallography (publisher, New York, 1961), p. 48.
  2. M. S. Shumate, “Interferometric Measurements of Large Indices of Refraction,” Appl. Opt. 5, 327 (1966).
    [CrossRef] [PubMed]
  3. J. C. Bhattacharya, “Refractive Index Measurement,” Opt. and Laser Technol. 19, 29 (1987).
    [CrossRef]
  4. E. Lau, “Interference Phenomenon of Double Gratings,” Ann. Phys. 6, 417 (1948).
    [CrossRef]
  5. J. M. Cowley, A. F. Moodie, “Fourier Images: 1. The Point Source,” Proc. Phys. Soc. London Sec. B 70, 486 (1957).
    [CrossRef]
  6. G. M. Sreekanth, C. A. Verghese, “The Use of Coarse Gratings to Find the Refractive Index of Liquids,” J. Sci. Instrum. 35, 305 (1958).
    [CrossRef]

1987 (1)

J. C. Bhattacharya, “Refractive Index Measurement,” Opt. and Laser Technol. 19, 29 (1987).
[CrossRef]

1966 (1)

1958 (1)

G. M. Sreekanth, C. A. Verghese, “The Use of Coarse Gratings to Find the Refractive Index of Liquids,” J. Sci. Instrum. 35, 305 (1958).
[CrossRef]

1957 (1)

J. M. Cowley, A. F. Moodie, “Fourier Images: 1. The Point Source,” Proc. Phys. Soc. London Sec. B 70, 486 (1957).
[CrossRef]

1948 (1)

E. Lau, “Interference Phenomenon of Double Gratings,” Ann. Phys. 6, 417 (1948).
[CrossRef]

Bhattacharya, J. C.

J. C. Bhattacharya, “Refractive Index Measurement,” Opt. and Laser Technol. 19, 29 (1987).
[CrossRef]

Bloss, F. D.

F. D. Bloss, Introduction to the Methods of Optical Crystallography (publisher, New York, 1961), p. 48.

Cowley, J. M.

J. M. Cowley, A. F. Moodie, “Fourier Images: 1. The Point Source,” Proc. Phys. Soc. London Sec. B 70, 486 (1957).
[CrossRef]

Lau, E.

E. Lau, “Interference Phenomenon of Double Gratings,” Ann. Phys. 6, 417 (1948).
[CrossRef]

Moodie, A. F.

J. M. Cowley, A. F. Moodie, “Fourier Images: 1. The Point Source,” Proc. Phys. Soc. London Sec. B 70, 486 (1957).
[CrossRef]

Shumate, M. S.

Sreekanth, G. M.

G. M. Sreekanth, C. A. Verghese, “The Use of Coarse Gratings to Find the Refractive Index of Liquids,” J. Sci. Instrum. 35, 305 (1958).
[CrossRef]

Verghese, C. A.

G. M. Sreekanth, C. A. Verghese, “The Use of Coarse Gratings to Find the Refractive Index of Liquids,” J. Sci. Instrum. 35, 305 (1958).
[CrossRef]

Ann. Phys. (1)

E. Lau, “Interference Phenomenon of Double Gratings,” Ann. Phys. 6, 417 (1948).
[CrossRef]

Appl. Opt. (1)

J. Sci. Instrum. (1)

G. M. Sreekanth, C. A. Verghese, “The Use of Coarse Gratings to Find the Refractive Index of Liquids,” J. Sci. Instrum. 35, 305 (1958).
[CrossRef]

Opt. and Laser Technol. (1)

J. C. Bhattacharya, “Refractive Index Measurement,” Opt. and Laser Technol. 19, 29 (1987).
[CrossRef]

Proc. Phys. Soc. London Sec. B (1)

J. M. Cowley, A. F. Moodie, “Fourier Images: 1. The Point Source,” Proc. Phys. Soc. London Sec. B 70, 486 (1957).
[CrossRef]

Other (1)

F. D. Bloss, Introduction to the Methods of Optical Crystallography (publisher, New York, 1961), p. 48.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical arrangement for the Talbot effect and moire techniques to determine the refractive index of a glass sample: S, sodium light; C, condenser; P, pinhole; CL, collimating lens; G1,G2, identical gratings; O, sample under test; PR, projection lens; I, fringe pattern.

Fig. 2
Fig. 2

Moire fringes: S fringe spacing; p, grating period; α, skew angle.

Fig. 3
Fig. 3

Fringes with a glass plate as the sample under test.

Fig. 4
Fig. 4

Fringes with a cell and a liquid.

Tables (4)

Tables Icon

Table I Error Summary for a Plane-Parallel Plate; n2 = 1.71

Tables Icon

Table II Refractive Index of Glass Standards

Tables Icon

Table III Error in thickness Summary for Wedge Shaped Plates; n = 1.53

Tables Icon

Table IV Refractive Index of Liquid Standards at 23°C

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

s = p 2 sin α / 2 ,
d p = d s ( 2 sin α / 2 ) .
d p = p .
D = m p = t sin θ i [ 1 ( 1 sin 2 θ i n 2 sin 2 θ i ) 1 / 2 ] ,
m p = t 1 sin θ 1 [ 1 ( 1 sin 2 θ 1 n 1 2 sin 2 θ 1 ) 1 / 2 ] .
m p = t 2 sin θ 2 [ 1 ( 1 sin 2 θ 2 n 2 2 sin 2 θ 2 ) 1 / 2 ] .
n 2 = sin θ 2 [ t 2 2 cos 2 θ 2 ( t 2 sin θ 2 + t 1 sin θ 1 k 1 ) 2 + 1 ] 1 / 2 ,
k 1 = cos θ 1 ( n 1 2 sin 2 θ 1 ) 1 / 2 1 ,
Δ d = δ · z ,
Δ d = z · α [ ( n 2 sin 2 θ i ) 1 / 2 n + 1 cos θ i ] ,
δ = α [ ( n 2 sin 2 θ i ) 1 / 2 n + 1 cos θ i ] ,
Δ t = Δ d / χ 1 ,
χ 1 = sin θ i [ 1 ( 1 sin 2 θ i n 2 sin 2 θ i ) 1 / 2 ] ,
n 2 = [ 1 sin 2 θ 2 ( 1 sin θ 1 sin θ 2 k ) 2 + sin 2 θ 2 ] 1 / 2 ,
k = 1 ( 1 sin 2 θ 1 n 1 2 sin 2 θ 1 ) 1 / 2 ,

Metrics