Abstract

We have generated pulsed, high power, sodium resonance radiation by sum frequency mixing the 1.06 μm and 1.32 μm outputs of two Nd:YAG lasers with an average power conversion efficiency of 30%. The wavelength of the sum radiation was tuned across the full Doppler width of the sodium-vapor D2 absorption by tuning the wavelength of either Nd:YAG laser with intracavity etalons. The wavelength of the 1.32 μm Nd:YAG laser was also tuned by injection seeding with a GaInAsP/InP diode laser. We have used this sodium resonance radiation for the lidar observation of the earth’s naturally occurring atomic–sodium layer at 90 km altitude.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Jeys, D. K. Killinger, J. Harrison, A. Mooradian, “Nd:YAG Sum-Frequency Generation of Sodium Resonance Radiation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WE6.
  2. C. S. Gardner, J. L. Bufton, C. R. Philbrick, “Compact Shuttle Lidar for Global Observations of Atmospheric Waves in the Mesospheric Sodium Layer,” in Technical Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere, (Optical Society of America, Washington, DC, 1985), paper WC29.
  3. D. J. Kuizenga, A. E. Siegman, “FM-Laser Operation of the Nd:YAG Laser”, IEEE J. Quantum Electron. QE-6, 673–677 (1970).
    [CrossRef]
  4. J. Liang, C. Fabre, “Modification of the Velocity of Atoms Submitted to a Resonant Multimode Laser: An Experimental Study,” Opt. Commun. 59, 31–35 (1986). J. Liang, L. Moi, C. Fabre, “The ‘Lamp Laser’: Realization of a Very Long Cavity Dye Laser,” Opt. Commun. 52, 131–135 (1984). L. Moi, “Application of a Very Long Cavity Laser to Atom Slowing Down and Optical Pumping”, Opt. Commun. 50, 349–352 (1984).
    [CrossRef]
  5. A. M. Glass, “The Photorefractive Effect,” Opt. Eng. 17, 470–479 (1978).
    [CrossRef]
  6. Z. L. Liau, J. N. Walpole, D. T. Tsang, “Low Threshold GaInAsP/InP Buried-Heterostructure Lasers with a Chemically Etched and Mass-Transported Mirror,” Appl. Phys. Lett. 44, 945–947 (1984).
    [CrossRef]
  7. E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
    [CrossRef]

1986 (1)

J. Liang, C. Fabre, “Modification of the Velocity of Atoms Submitted to a Resonant Multimode Laser: An Experimental Study,” Opt. Commun. 59, 31–35 (1986). J. Liang, L. Moi, C. Fabre, “The ‘Lamp Laser’: Realization of a Very Long Cavity Dye Laser,” Opt. Commun. 52, 131–135 (1984). L. Moi, “Application of a Very Long Cavity Laser to Atom Slowing Down and Optical Pumping”, Opt. Commun. 50, 349–352 (1984).
[CrossRef]

1984 (1)

Z. L. Liau, J. N. Walpole, D. T. Tsang, “Low Threshold GaInAsP/InP Buried-Heterostructure Lasers with a Chemically Etched and Mass-Transported Mirror,” Appl. Phys. Lett. 44, 945–947 (1984).
[CrossRef]

1981 (1)

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
[CrossRef]

1978 (1)

A. M. Glass, “The Photorefractive Effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

1970 (1)

D. J. Kuizenga, A. E. Siegman, “FM-Laser Operation of the Nd:YAG Laser”, IEEE J. Quantum Electron. QE-6, 673–677 (1970).
[CrossRef]

Bufton, J. L.

C. S. Gardner, J. L. Bufton, C. R. Philbrick, “Compact Shuttle Lidar for Global Observations of Atmospheric Waves in the Mesospheric Sodium Layer,” in Technical Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere, (Optical Society of America, Washington, DC, 1985), paper WC29.

Fabre, C.

J. Liang, C. Fabre, “Modification of the Velocity of Atoms Submitted to a Resonant Multimode Laser: An Experimental Study,” Opt. Commun. 59, 31–35 (1986). J. Liang, L. Moi, C. Fabre, “The ‘Lamp Laser’: Realization of a Very Long Cavity Dye Laser,” Opt. Commun. 52, 131–135 (1984). L. Moi, “Application of a Very Long Cavity Laser to Atom Slowing Down and Optical Pumping”, Opt. Commun. 50, 349–352 (1984).
[CrossRef]

Gardner, C. S.

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
[CrossRef]

C. S. Gardner, J. L. Bufton, C. R. Philbrick, “Compact Shuttle Lidar for Global Observations of Atmospheric Waves in the Mesospheric Sodium Layer,” in Technical Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere, (Optical Society of America, Washington, DC, 1985), paper WC29.

Glass, A. M.

A. M. Glass, “The Photorefractive Effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

Harrison, J.

T. H. Jeys, D. K. Killinger, J. Harrison, A. Mooradian, “Nd:YAG Sum-Frequency Generation of Sodium Resonance Radiation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WE6.

Jeys, T. H.

T. H. Jeys, D. K. Killinger, J. Harrison, A. Mooradian, “Nd:YAG Sum-Frequency Generation of Sodium Resonance Radiation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WE6.

Killinger, D. K.

T. H. Jeys, D. K. Killinger, J. Harrison, A. Mooradian, “Nd:YAG Sum-Frequency Generation of Sodium Resonance Radiation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WE6.

Kuizenga, D. J.

D. J. Kuizenga, A. E. Siegman, “FM-Laser Operation of the Nd:YAG Laser”, IEEE J. Quantum Electron. QE-6, 673–677 (1970).
[CrossRef]

Liang, J.

J. Liang, C. Fabre, “Modification of the Velocity of Atoms Submitted to a Resonant Multimode Laser: An Experimental Study,” Opt. Commun. 59, 31–35 (1986). J. Liang, L. Moi, C. Fabre, “The ‘Lamp Laser’: Realization of a Very Long Cavity Dye Laser,” Opt. Commun. 52, 131–135 (1984). L. Moi, “Application of a Very Long Cavity Laser to Atom Slowing Down and Optical Pumping”, Opt. Commun. 50, 349–352 (1984).
[CrossRef]

Liau, Z. L.

Z. L. Liau, J. N. Walpole, D. T. Tsang, “Low Threshold GaInAsP/InP Buried-Heterostructure Lasers with a Chemically Etched and Mass-Transported Mirror,” Appl. Phys. Lett. 44, 945–947 (1984).
[CrossRef]

Mooradian, A.

T. H. Jeys, D. K. Killinger, J. Harrison, A. Mooradian, “Nd:YAG Sum-Frequency Generation of Sodium Resonance Radiation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WE6.

Philbrick, C. R.

C. S. Gardner, J. L. Bufton, C. R. Philbrick, “Compact Shuttle Lidar for Global Observations of Atmospheric Waves in the Mesospheric Sodium Layer,” in Technical Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere, (Optical Society of America, Washington, DC, 1985), paper WC29.

Richter, E. S.

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
[CrossRef]

Rowlett, J. R.

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
[CrossRef]

Sechrist, C. F.

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
[CrossRef]

Siegman, A. E.

D. J. Kuizenga, A. E. Siegman, “FM-Laser Operation of the Nd:YAG Laser”, IEEE J. Quantum Electron. QE-6, 673–677 (1970).
[CrossRef]

Tsang, D. T.

Z. L. Liau, J. N. Walpole, D. T. Tsang, “Low Threshold GaInAsP/InP Buried-Heterostructure Lasers with a Chemically Etched and Mass-Transported Mirror,” Appl. Phys. Lett. 44, 945–947 (1984).
[CrossRef]

Walpole, J. N.

Z. L. Liau, J. N. Walpole, D. T. Tsang, “Low Threshold GaInAsP/InP Buried-Heterostructure Lasers with a Chemically Etched and Mass-Transported Mirror,” Appl. Phys. Lett. 44, 945–947 (1984).
[CrossRef]

Appl. Phys. Lett. (1)

Z. L. Liau, J. N. Walpole, D. T. Tsang, “Low Threshold GaInAsP/InP Buried-Heterostructure Lasers with a Chemically Etched and Mass-Transported Mirror,” Appl. Phys. Lett. 44, 945–947 (1984).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. J. Kuizenga, A. E. Siegman, “FM-Laser Operation of the Nd:YAG Laser”, IEEE J. Quantum Electron. QE-6, 673–677 (1970).
[CrossRef]

J. Atmos. Terr. Phys. (1)

E. S. Richter, J. R. Rowlett, C. S. Gardner, C. F. Sechrist, “Lidar Observation of the Mesospheric Sodium Layer Over Urbana Illinois,” J. Atmos. Terr. Phys. 43, 327–337 (1981). C. S. Gardner, D. G. Voelz, “Lidar Measurements of Gravity Wave Saturation Effects in the Sodium Layer,” Geophys. Res. Lett. 12, 765–768 (1985).
[CrossRef]

Opt. Commun. (1)

J. Liang, C. Fabre, “Modification of the Velocity of Atoms Submitted to a Resonant Multimode Laser: An Experimental Study,” Opt. Commun. 59, 31–35 (1986). J. Liang, L. Moi, C. Fabre, “The ‘Lamp Laser’: Realization of a Very Long Cavity Dye Laser,” Opt. Commun. 52, 131–135 (1984). L. Moi, “Application of a Very Long Cavity Laser to Atom Slowing Down and Optical Pumping”, Opt. Commun. 50, 349–352 (1984).
[CrossRef]

Opt. Eng. (1)

A. M. Glass, “The Photorefractive Effect,” Opt. Eng. 17, 470–479 (1978).
[CrossRef]

Other (2)

T. H. Jeys, D. K. Killinger, J. Harrison, A. Mooradian, “Nd:YAG Sum-Frequency Generation of Sodium Resonance Radiation,” in Technical Digest of Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WE6.

C. S. Gardner, J. L. Bufton, C. R. Philbrick, “Compact Shuttle Lidar for Global Observations of Atmospheric Waves in the Mesospheric Sodium Layer,” in Technical Digest of Topical Meeting on Optical Remote Sensing of the Atmosphere, (Optical Society of America, Washington, DC, 1985), paper WC29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic of the laser system for sum frequency generation of sodium resonance radiation. The Nd:YAG lasers contained etalons for wavelength tuning and acousto-optic modulators for Q-switching the laser radiation. The 1.064 μm Nd:YAG laser operated with a 10% output coupler while the 1.319 μm Nd:YAG laser operated with a 3% output coupler.

Fig. 2
Fig. 2

Tuning curves of the cw 1.06 μm and 1.32 μm Nd:YAG lasers. Each laser was polarized and operated continuously in the TEM00 spatial mode. The wavelength of each laser was tuned by manually tilting solid intracavity etalons which were coated for 15% reflectivity per surface. The 1.06 μm laser was tuned with a 0.5 mm thick etalon and the 1.32 μm laser was tuned with a 0.2 mm thick etalon. The absolute wavelengths were measured by a vacuum wavemeter. The 1.32 μm Nd:YAG laser cavity was purged with nitrogen gas in order to eliminate water vapor absorption lines which significantly suppressed the long wavelength end of the tuning curve, and prohibited the laser from operating at 1.31935 μm, 1.31941 μm, and 1.31949 μm. Sodium resonance radiation was generated by sum frequency mixing radiation with wavelengths indicated by the arrows.

Fig. 3
Fig. 3

Frequency spectra of the cw Nd:YAG laser radiation and the sum radiation as measured by three Fabry-Perot spectrum analyzers. The lasers and sum radiation spectra were measured by confocal Fabry-Perot spectrum analyzers, each with a free spectral range of 2 GHz and a finesse of about 200. The measured linewidth of each frequency is limited by the finesse of the spectrum analyzer. The 1.06 μm and 1.32 μm Nd:YAG lasers had cavity mode frequency intervals of 125 MHz and 150 MHz, respectively, while the sum radiation had an average frequency interval of 61 MHz and a minimum frequency interval of 25 MHz (150 MHz–125 MHz).

Fig. 4
Fig. 4

Temperature dependence of the sum frequency generation of sodium resonance radiation in a 5-cm-long crystal of lithium niobate.

Fig. 5
Fig. 5

Injection seeding of a Q-switched 1.319 μm Nd:YAG laser with the output of a GaInAsP/InP diode laser. The diode-laser radiation was injected into the Nd:YAG laser via the Brewster plate while the Faraday optical isolator served to protect the diode laser from the high power Nd:YAG laser radiation. The Q-switched Nd:YAG laser operated with an average power of 1 W, a pulse repetition rate of 1 kHz, and a pulse width of 3 μs. The 1.32 μm Nd:YAG laser used in the injection-seeding study was not the same laser as that used in the sum frequency mixing or lidar study.

Fig. 6
Fig. 6

Sodium resonance radiation backscattered by the earth’s atmosphere. Photomultiplier counts per μs are plotted as a function of the elapsed time after the sodium resonance radiation pulse is transmitted into the atmosphere. The signal from the mesospheric sodium layer occurs at a round-trip time of 600 μs.

Metrics