Abstract

The absorption by pure CO2 beyond the ν3 bandhead has been measured with a grating spectrometer. Experiments have been made in the 0–60-bar and 291–751-K pressure and temperature ranges. Our room temperature determinations are in good agreement with previous ones and the measured temperature dependence above room temperature is consistent with recent determinations below 300 K. Lorentzian calculations, modified by the introduction of a line shape corrective factor χ, are presented. Good agreement between the observed and calculated spectra is obtained when a temperature independent χ factor, determined by Cousin et al. at 296 K, is used.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267–280 (1969).
    [CrossRef]
  2. B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527–537 (1964).
    [CrossRef]
  3. M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
    [CrossRef] [PubMed]
  4. R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897–906 (1985).
    [CrossRef] [PubMed]
  5. C. Cousin-Lucasseau, “Absorption I. R. du CO2 dans la fenêtre atmosphérique autour de 4.2 μm—Détermination de la dépendance en température du coefficient d’absorption.—Influence des interférences spectrales sur le profil observé,” Thesis, Rennes (1987).
  6. J. M. Hartmann, “Measurements and Calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm Region,” J. Chem. Phys. 90, 2944–2950 (1989).
    [CrossRef]
  7. C. Boulet, J. Boissoles, D. Robert, “Collisionally Induced Population Transfer Effect in Infrared Absorption Spectra. I. A Line-by-Line Coupling Theory from Resonance to the Far Wings,” J. Chem. Phys. 89, 625–634 (1988).
    [CrossRef]
  8. J. P. Houdeau, C. Boulet, D. Robert, “A Theoretical and Experimental Study of the Infrared Line Shape from Resonance to the Wings for Uncoupled Lines,” J. Chem. Phys. 82, 1661–1673 (1985).
    [CrossRef]
  9. C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
    [CrossRef]
  10. R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range. I 4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337–343 (1986).
    [CrossRef]
  11. J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 253.
  12. V. Menoux, R. Le Doucen, C. Boulet, “Line Shape in the Low-Frequency Wing of Self-Broadened CO2 Lines,” Appl. Opt. 26, 554–562 (1987).
    [CrossRef] [PubMed]
  13. GEISA (Spectroscopic database), Laboratoire de Météorologie Dynamique du CNRS, Ecole Polytechnique, Palaiseau 91128, France.
  14. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
    [CrossRef] [PubMed]

1989 (1)

J. M. Hartmann, “Measurements and Calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm Region,” J. Chem. Phys. 90, 2944–2950 (1989).
[CrossRef]

1988 (2)

C. Boulet, J. Boissoles, D. Robert, “Collisionally Induced Population Transfer Effect in Infrared Absorption Spectra. I. A Line-by-Line Coupling Theory from Resonance to the Far Wings,” J. Chem. Phys. 89, 625–634 (1988).
[CrossRef]

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

1987 (1)

1986 (2)

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
[CrossRef]

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range. I 4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337–343 (1986).
[CrossRef]

1985 (3)

J. P. Houdeau, C. Boulet, D. Robert, “A Theoretical and Experimental Study of the Infrared Line Shape from Resonance to the Wings for Uncoupled Lines,” J. Chem. Phys. 82, 1661–1673 (1985).
[CrossRef]

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897–906 (1985).
[CrossRef] [PubMed]

1969 (1)

1964 (1)

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527–537 (1964).
[CrossRef]

Bartky, C. E.

Benedict, W. S.

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527–537 (1964).
[CrossRef]

Bird, R. B.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 253.

Blanchard, A.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

Boissoles, J.

C. Boulet, J. Boissoles, D. Robert, “Collisionally Induced Population Transfer Effect in Infrared Absorption Spectra. I. A Line-by-Line Coupling Theory from Resonance to the Far Wings,” J. Chem. Phys. 89, 625–634 (1988).
[CrossRef]

Boulet, C.

C. Boulet, J. Boissoles, D. Robert, “Collisionally Induced Population Transfer Effect in Infrared Absorption Spectra. I. A Line-by-Line Coupling Theory from Resonance to the Far Wings,” J. Chem. Phys. 89, 625–634 (1988).
[CrossRef]

V. Menoux, R. Le Doucen, C. Boulet, “Line Shape in the Low-Frequency Wing of Self-Broadened CO2 Lines,” Appl. Opt. 26, 554–562 (1987).
[CrossRef] [PubMed]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
[CrossRef]

J. P. Houdeau, C. Boulet, D. Robert, “A Theoretical and Experimental Study of the Infrared Line Shape from Resonance to the Wings for Uncoupled Lines,” J. Chem. Phys. 82, 1661–1673 (1985).
[CrossRef]

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897–906 (1985).
[CrossRef] [PubMed]

Burch, D. E.

Cann, M. W. P.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

Cousin, C.

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
[CrossRef]

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897–906 (1985).
[CrossRef] [PubMed]

Cousin-Lucasseau, C.

C. Cousin-Lucasseau, “Absorption I. R. du CO2 dans la fenêtre atmosphérique autour de 4.2 μm—Détermination de la dépendance en température du coefficient d’absorption.—Influence des interférences spectrales sur le profil observé,” Thesis, Rennes (1987).

Curtiss, C. F.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 253.

Findlay, F. D.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

Gryvnak, D. A.

Hartmann, J. M.

Henry, A.

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
[CrossRef]

R. Le Doucen, C. Cousin, C. Boulet, A. Henry, “Temperature Dependence of the Absorption in the Region Beyond the 4.3-μm Band Head of CO2. 1: Pure CO2 Case,” Appl. Opt. 24, 897–906 (1985).
[CrossRef] [PubMed]

Hirschfelder, J. O.

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 253.

Houdeau, J. P.

J. P. Houdeau, C. Boulet, D. Robert, “A Theoretical and Experimental Study of the Infrared Line Shape from Resonance to the Wings for Uncoupled Lines,” J. Chem. Phys. 82, 1661–1673 (1985).
[CrossRef]

Le Doucen, R.

Leon, Di

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range. I 4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337–343 (1986).
[CrossRef]

Levi, R.

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range. I 4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337–343 (1986).
[CrossRef]

Menoux, V.

Nicholls, R. W.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

Patty, R. R.

Perrin, M. Y.

Robert, D.

C. Boulet, J. Boissoles, D. Robert, “Collisionally Induced Population Transfer Effect in Infrared Absorption Spectra. I. A Line-by-Line Coupling Theory from Resonance to the Far Wings,” J. Chem. Phys. 89, 625–634 (1988).
[CrossRef]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
[CrossRef]

J. P. Houdeau, C. Boulet, D. Robert, “A Theoretical and Experimental Study of the Infrared Line Shape from Resonance to the Wings for Uncoupled Lines,” J. Chem. Phys. 82, 1661–1673 (1985).
[CrossRef]

Roney, P. L.

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

Rosenmann, L.

Silverman, S.

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527–537 (1964).
[CrossRef]

Taine, J.

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Accurate Calculated Tabulations of IR and Raman CO2 Line Broadening by CO2, H2O, N2, and O2 in the 300–2400-K Temperature Range,” Appl. Opt. 27, 3902–3907 (1988).
[CrossRef] [PubMed]

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range. I 4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337–343 (1986).
[CrossRef]

Winters, B. H.

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527–537 (1964).
[CrossRef]

Appl Opt. (1)

M. W. P. Cann, R. W. Nicholls, P. L. Roney, A. Blanchard, F. D. Findlay, “Spectral Line Shapes for Carbon Dioxide in the 4.3-μm Band,” Appl Opt. 24, 1374–1384 (1985).
[CrossRef] [PubMed]

Appl. Opt. (3)

J. Chem. Phys. (3)

J. M. Hartmann, “Measurements and Calculations of CO2 room-temperature high-pressure spectra in the 4.3 μm Region,” J. Chem. Phys. 90, 2944–2950 (1989).
[CrossRef]

C. Boulet, J. Boissoles, D. Robert, “Collisionally Induced Population Transfer Effect in Infrared Absorption Spectra. I. A Line-by-Line Coupling Theory from Resonance to the Far Wings,” J. Chem. Phys. 89, 625–634 (1988).
[CrossRef]

J. P. Houdeau, C. Boulet, D. Robert, “A Theoretical and Experimental Study of the Infrared Line Shape from Resonance to the Wings for Uncoupled Lines,” J. Chem. Phys. 82, 1661–1673 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (3)

B. H. Winters, S. Silverman, W. S. Benedict, “Line Shape in the Wing Beyond the Band Head of the 4.3 μm Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 4, 527–537 (1964).
[CrossRef]

C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Line Coupling in the Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 36, 521–538 (1986).
[CrossRef]

R. Levi, Di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range. I 4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337–343 (1986).
[CrossRef]

Other (3)

J. O. Hirschfelder, C. F. Curtiss, R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967), p. 253.

C. Cousin-Lucasseau, “Absorption I. R. du CO2 dans la fenêtre atmosphérique autour de 4.2 μm—Détermination de la dépendance en température du coefficient d’absorption.—Influence des interférences spectrales sur le profil observé,” Thesis, Rennes (1987).

GEISA (Spectroscopic database), Laboratoire de Météorologie Dynamique du CNRS, Ecole Polytechnique, Palaiseau 91128, France.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus.

Fig. 2
Fig. 2

Experimental pure CO2 absorption spectra at 627 K for 13.5-, 31.9-, and 58.3-bar pressures.

Fig. 3
Fig. 3

Density dependence of the pure CO2 absorption coefficient at (a) 414 K and (b) 627 K.

Fig. 4
Fig. 4

Experimental temperature dependence of the pure CO2 normalized absorption coefficient for wavenumbers: (a) 2410 cm−1; (b) 2460 cm−1; (c) 2510 cm−1; +, Refs. 4 and 5;|, this work.

Fig. 5
Fig. 5

Wavenumber dependence of the pure CO2 normalized absorption coefficient at (a) 291 K; (b) 534 K; (c) 751 K; ■, experimental; calculated with the model: ………, Lorentzian; ——, Lorentzian with the χ (296 K) factor of Refs. 4 and 5.

Tables (1)

Tables Icon

Table I Experimentally Determined Pure CO2 Normalized Absorption Coefficients (in cm−1 Am−2)

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

τ ¯ ( ν , P , T ) = S ( ν , P , T ) / S ( ν , 0 , T ) ,
τ ¯ ( ν , P , T ) = ν Δ ν / 2 ν + Δ ν / 2 τ ( ν , P , T ) f ( ν ν ) d ν ,
K ( ν , P , T ) = ln [ τ ( ν , P , T ) ] / d ,
K ( ν , P , T ) = A 0 ( ν , T ) * N CO 2 ( P , T ) 2 ,
A 0 ( ν , T ) = lines l χ ( ν ν l , T ) [ S l ( T ) ( γ s ( T ) ) ] / { π [ ν ν l N CO 2 Δ s ( T ) ] 2 + N CO 2 γ s ( T ) 2 } ,
| ν ν l | | N CO 2 Δ s ( T ) | and | N CO 2 γ s ( T ) | ,

Metrics