Abstract

Optical properties of different human tissues in vitro have been evaluated by measuring extinction and absorption coefficients at 635- and 515-nm wavelengths and a scattering angular dependence at 635 nm. Extinction was determined by the on-axis attenuation of light transmitted through sliced specimens of various thicknesses. The absorption coefficient was determined by placing samples into an integrating sphere. The Henyey-Greenstein function was used for fitting experimental data of the scattering pattern. The purpose of this work was to contribute to the study of light propagation in mammalian tissues. The results show that, for the investigated tissues, extinction coefficients range from ~200 to 500 cm−1 whereas absorption coefficients, depending on wavelength, vary from 0.2 to 25 cm−1. Scattering is forward peaked with an average cosine of ~0.7.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Dougherty, “Photodynamic Therapy (PDT) of Malignant Tumors,” CRC Crit. Rev. Oncol. Hematol. 2, 83–115 (1984).
    [CrossRef]
  2. B. C. Wilson, M. S. Patterson, “The Physics of Photodynamic Therapy,” Phys. Med. Biol. 31, 327–360 (1986).
    [CrossRef] [PubMed]
  3. J. P. A. Marijnissen, W. M. Star, “Quantitative Light Dosimetry In Vitro and In Vivo,” Lasers Med. Sci. 2, 235–242 (1987).
    [CrossRef]
  4. A. J. Welch, G. Yoon, M. J. C. van Gemert, “Practical Models for Light Distribution in Laser-Irradiated Tissue,” Lasers Surg. Med. 6, 488–493 (1987).
    [CrossRef] [PubMed]
  5. W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light Dosimetry in Optical Phantoms and in Tissues. 1: Multiple Flux and Transport Theory,” Phys. Med. Biol. 33, 437–454 (1988).
    [CrossRef] [PubMed]
  6. A. L. McKenzie, “Can Diffusion be Assumed in Correcting for Oblique Incidence in Laser Photodynamic Therapy?,” Phys. Med. Biol. 31, 285–290 (1986).
    [CrossRef] [PubMed]
  7. P. Kubelka, “New Contributions to the Optics of Intensely Light Scattering Material. Part I,” J. Opt. Soc. Am. 38, 448–457 (1948).
    [CrossRef] [PubMed]
  8. S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).
  9. B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  10. S. L. Jacques, S. A. Prahl, “Modelling Optical and Thermal Distributions in Tissue During Laser Irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
    [CrossRef] [PubMed]
  11. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
    [CrossRef] [PubMed]
  12. F. Grum, R. J. Becherer, Optical Radiation Measurement Vol. 1, Radiometry (Academic, Orlando, 1979), pp. 292–293.
  13. J. A. Jacquez, H. F. Kuppenheim, “Theory of the Integrating Sphere,” J. Opt. Soc. Am. 45, 460–470 (1955).
    [CrossRef]
  14. D. G. Goebel, “Generalized Integrating-Sphere Theory,” Appl. Opt. 6, 125–128 (1967).
    [CrossRef] [PubMed]
  15. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of He-Ne Laser Light Scattering by Human Dermis,” Lasers Med. Sci. 1, 309–333 (1987).
  16. H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 2 (Academic, New York, 1980), pp. 303–330.
  17. R. Crilly, “A Study of the Optical Properties of Soft Tissue in the Near Infra-Red,” 1986 AAPM Annual Meeting, Abstract, Med. Phys. 13, 603 (1986).
  18. S. L. Jacques, D. R. Weaver, S. M. Reppert, “Penetration of Light into the Uterus of Pregnant Mammals,” Photochem. Photobiol. 45, 637–641 (1987).
    [CrossRef] [PubMed]
  19. P. Elterman, “Integrating Cavity Spectroscopy,” Appl. Opt. 9, 2140–2142 (1970).
    [CrossRef] [PubMed]
  20. J. M. Steinke, A. P. Shepherd, “Comparison of Mie Theory and the Light Scattering of Red Blood Cells,” Appl. Opt. 27, 4027–4033 (1988).
    [CrossRef] [PubMed]
  21. J. P. A. Marijnissen, W. M. Star, “Phantom Measurements for Light Dosimetry using Isotropic and Small Aperture Detectors,” in Porphyrin Localization and Treatment of TumorsD. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984), pp. 133–148.

1988

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light Dosimetry in Optical Phantoms and in Tissues. 1: Multiple Flux and Transport Theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

J. M. Steinke, A. P. Shepherd, “Comparison of Mie Theory and the Light Scattering of Red Blood Cells,” Appl. Opt. 27, 4027–4033 (1988).
[CrossRef] [PubMed]

1987

S. L. Jacques, D. R. Weaver, S. M. Reppert, “Penetration of Light into the Uterus of Pregnant Mammals,” Photochem. Photobiol. 45, 637–641 (1987).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of He-Ne Laser Light Scattering by Human Dermis,” Lasers Med. Sci. 1, 309–333 (1987).

S. L. Jacques, S. A. Prahl, “Modelling Optical and Thermal Distributions in Tissue During Laser Irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

J. P. A. Marijnissen, W. M. Star, “Quantitative Light Dosimetry In Vitro and In Vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

A. J. Welch, G. Yoon, M. J. C. van Gemert, “Practical Models for Light Distribution in Laser-Irradiated Tissue,” Lasers Surg. Med. 6, 488–493 (1987).
[CrossRef] [PubMed]

1986

B. C. Wilson, M. S. Patterson, “The Physics of Photodynamic Therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

A. L. McKenzie, “Can Diffusion be Assumed in Correcting for Oblique Incidence in Laser Photodynamic Therapy?,” Phys. Med. Biol. 31, 285–290 (1986).
[CrossRef] [PubMed]

R. Crilly, “A Study of the Optical Properties of Soft Tissue in the Near Infra-Red,” 1986 AAPM Annual Meeting, Abstract, Med. Phys. 13, 603 (1986).

1984

T. J. Dougherty, “Photodynamic Therapy (PDT) of Malignant Tumors,” CRC Crit. Rev. Oncol. Hematol. 2, 83–115 (1984).
[CrossRef]

1983

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

1970

1967

1955

1948

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of He-Ne Laser Light Scattering by Human Dermis,” Lasers Med. Sci. 1, 309–333 (1987).

Becherer, R. J.

F. Grum, R. J. Becherer, Optical Radiation Measurement Vol. 1, Radiometry (Academic, Orlando, 1979), pp. 292–293.

Chandrasekhar, S.

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

Crilly, R.

R. Crilly, “A Study of the Optical Properties of Soft Tissue in the Near Infra-Red,” 1986 AAPM Annual Meeting, Abstract, Med. Phys. 13, 603 (1986).

Dougherty, T. J.

T. J. Dougherty, “Photodynamic Therapy (PDT) of Malignant Tumors,” CRC Crit. Rev. Oncol. Hematol. 2, 83–115 (1984).
[CrossRef]

Elterman, P.

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

Goebel, D. G.

Grum, F.

F. Grum, R. J. Becherer, Optical Radiation Measurement Vol. 1, Radiometry (Academic, Orlando, 1979), pp. 292–293.

Jacques, S. L.

S. L. Jacques, D. R. Weaver, S. M. Reppert, “Penetration of Light into the Uterus of Pregnant Mammals,” Photochem. Photobiol. 45, 637–641 (1987).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of He-Ne Laser Light Scattering by Human Dermis,” Lasers Med. Sci. 1, 309–333 (1987).

S. L. Jacques, S. A. Prahl, “Modelling Optical and Thermal Distributions in Tissue During Laser Irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

Jacquez, J. A.

Kubelka, P.

Kuppenheim, H. F.

Marijnissen, J. P. A.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light Dosimetry in Optical Phantoms and in Tissues. 1: Multiple Flux and Transport Theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

J. P. A. Marijnissen, W. M. Star, “Quantitative Light Dosimetry In Vitro and In Vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

J. P. A. Marijnissen, W. M. Star, “Phantom Measurements for Light Dosimetry using Isotropic and Small Aperture Detectors,” in Porphyrin Localization and Treatment of TumorsD. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984), pp. 133–148.

McKenzie, A. L.

A. L. McKenzie, “Can Diffusion be Assumed in Correcting for Oblique Incidence in Laser Photodynamic Therapy?,” Phys. Med. Biol. 31, 285–290 (1986).
[CrossRef] [PubMed]

Patterson, M. S.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The Physics of Photodynamic Therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

Prahl, S. A.

S. L. Jacques, S. A. Prahl, “Modelling Optical and Thermal Distributions in Tissue During Laser Irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of He-Ne Laser Light Scattering by Human Dermis,” Lasers Med. Sci. 1, 309–333 (1987).

Reppert, S. M.

S. L. Jacques, D. R. Weaver, S. M. Reppert, “Penetration of Light into the Uterus of Pregnant Mammals,” Photochem. Photobiol. 45, 637–641 (1987).
[CrossRef] [PubMed]

Shepherd, A. P.

Star, W. M.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light Dosimetry in Optical Phantoms and in Tissues. 1: Multiple Flux and Transport Theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

J. P. A. Marijnissen, W. M. Star, “Quantitative Light Dosimetry In Vitro and In Vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

J. P. A. Marijnissen, W. M. Star, “Phantom Measurements for Light Dosimetry using Isotropic and Small Aperture Detectors,” in Porphyrin Localization and Treatment of TumorsD. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984), pp. 133–148.

Steinke, J. M.

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 2 (Academic, New York, 1980), pp. 303–330.

van Gemert, M. J. C.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light Dosimetry in Optical Phantoms and in Tissues. 1: Multiple Flux and Transport Theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

A. J. Welch, G. Yoon, M. J. C. van Gemert, “Practical Models for Light Distribution in Laser-Irradiated Tissue,” Lasers Surg. Med. 6, 488–493 (1987).
[CrossRef] [PubMed]

Weaver, D. R.

S. L. Jacques, D. R. Weaver, S. M. Reppert, “Penetration of Light into the Uterus of Pregnant Mammals,” Photochem. Photobiol. 45, 637–641 (1987).
[CrossRef] [PubMed]

Welch, A. J.

A. J. Welch, G. Yoon, M. J. C. van Gemert, “Practical Models for Light Distribution in Laser-Irradiated Tissue,” Lasers Surg. Med. 6, 488–493 (1987).
[CrossRef] [PubMed]

Wilson, B. C.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The Physics of Photodynamic Therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Yoon, G.

A. J. Welch, G. Yoon, M. J. C. van Gemert, “Practical Models for Light Distribution in Laser-Irradiated Tissue,” Lasers Surg. Med. 6, 488–493 (1987).
[CrossRef] [PubMed]

1986 AAPM Annual Meeting, Abstract, Med. Phys.

R. Crilly, “A Study of the Optical Properties of Soft Tissue in the Near Infra-Red,” 1986 AAPM Annual Meeting, Abstract, Med. Phys. 13, 603 (1986).

Appl. Opt.

CRC Crit. Rev. Oncol. Hematol.

T. J. Dougherty, “Photodynamic Therapy (PDT) of Malignant Tumors,” CRC Crit. Rev. Oncol. Hematol. 2, 83–115 (1984).
[CrossRef]

J. Opt. Soc. Am.

Lasers Med. Sci.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of He-Ne Laser Light Scattering by Human Dermis,” Lasers Med. Sci. 1, 309–333 (1987).

J. P. A. Marijnissen, W. M. Star, “Quantitative Light Dosimetry In Vitro and In Vivo,” Lasers Med. Sci. 2, 235–242 (1987).
[CrossRef]

Lasers Surg. Med.

A. J. Welch, G. Yoon, M. J. C. van Gemert, “Practical Models for Light Distribution in Laser-Irradiated Tissue,” Lasers Surg. Med. 6, 488–493 (1987).
[CrossRef] [PubMed]

S. L. Jacques, S. A. Prahl, “Modelling Optical and Thermal Distributions in Tissue During Laser Irradiation,” Lasers Surg. Med. 6, 494–503 (1987).
[CrossRef] [PubMed]

Med. Phys.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1987).
[CrossRef] [PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Photochem. Photobiol.

S. L. Jacques, D. R. Weaver, S. M. Reppert, “Penetration of Light into the Uterus of Pregnant Mammals,” Photochem. Photobiol. 45, 637–641 (1987).
[CrossRef] [PubMed]

Phys. Med. Biol.

W. M. Star, J. P. A. Marijnissen, M. J. C. van Gemert, “Light Dosimetry in Optical Phantoms and in Tissues. 1: Multiple Flux and Transport Theory,” Phys. Med. Biol. 33, 437–454 (1988).
[CrossRef] [PubMed]

A. L. McKenzie, “Can Diffusion be Assumed in Correcting for Oblique Incidence in Laser Photodynamic Therapy?,” Phys. Med. Biol. 31, 285–290 (1986).
[CrossRef] [PubMed]

B. C. Wilson, M. S. Patterson, “The Physics of Photodynamic Therapy,” Phys. Med. Biol. 31, 327–360 (1986).
[CrossRef] [PubMed]

Other

S. Chandrasekhar, Radiative Transfer (Dover, New York, 1960).

H. C. van de Hulst, Multiple Light Scattering: Tables, Formulas, and Applications. Vol. 2 (Academic, New York, 1980), pp. 303–330.

F. Grum, R. J. Becherer, Optical Radiation Measurement Vol. 1, Radiometry (Academic, Orlando, 1979), pp. 292–293.

J. P. A. Marijnissen, W. M. Star, “Phantom Measurements for Light Dosimetry using Isotropic and Small Aperture Detectors,” in Porphyrin Localization and Treatment of TumorsD. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984), pp. 133–148.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement for measuring on-axis light attenuation. The distance from the sample to the 5-mm diam pinhole is 1 m. The photodiode at 90° with respect to the light beam was used for normalizing attenuation readings.

Fig. 2
Fig. 2

Experimental arrangement for measuring absorbance. Sample and diffuser can simultaneously slide orthogonally to the laser beam.

Fig. 3
Fig. 3

Experimental arrangement for measuring scattering angular dependence.

Fig. 4
Fig. 4

Attenuation for three tissues as a function of sample thickness. The different symbols represent measurements from specimens of different subjects. Each datum is the mean of at least three measurements at different sites of each sample. The straight lines are the least squares fits for each subject. The extinction coefficient was evaluated by averaging the individual slopes: (a)–(c) attentuation at 635 nm; (d) attenuation at 515 nm.

Fig. 5
Fig. 5

Absorption measurements for three different tissues by employing the integrating sphere. Data are expressed as the relative difference between the readings when the primary beam is incident on the standard (Fst) or the sample (Fs) for different thicknesses. The different symbols represent measurements from specimens of different subjects. The straight lines are the least-squares fit for each subject. The absorption coefficient was evaluated by averaging the individual slopes. (A)–(C) measurements at 635; (D) measurements at 515 nm.

Fig. 6
Fig. 6

Scattering phase function for liver, lung, and uterus evaluated at 635 nm. Experimental points have been fitted and normalized by using a linear combination of two Henyey-Greenstein functions. The solid line represents the fitting results.

Tables (1)

Tables Icon

Table I Experimental Values of Tissue Optical Parameters

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F t ( i ) = P 0 f i r t / [ 1 r w ( 1 0 m f 1 ) 0 m r i f i ] ,
r w ( 1 0 m f i ) + 0 m r i f i
F s ( i ) / F st ( i ) = r s / r st ,
F s ( i ) / F st ( i ) = r ¯ w r s / r st ,
A s = 1 r s = 1 k ( F s / F st ) .
p ( cos θ ) = ( 1 g 2 ) / ( 1 + g 2 2 g cos θ ) 3 / 2 ,
eff = [ 3 ( a ) 2 + 3 a s ( 1 g ) ] 1 / 2

Metrics