Abstract

The time resolved propagation of femtosecond and picosecond laser pulses within turbid tissues is simulated by a Monte Carlo model. The internal distribution of irradiance for an impulse vs a 4-ps pulse is specified at different times for various scattering coefficients and scattering phase functions. Such simulations provide time resolved dosimetry for predicting the distribution of single- and two-photon chemical reactions in turbid tissues. For femtosecond pulses in highly scattering tissues, two-photon reactions are dominated by the initial primary (unscattered, unabsorbed) pulse, and single-photon reactions are dominated by the scattered diffuse irradiance. For picosecond pulses in highly scattering tissues, both single- and two-photon reactions are dominated by the scattered irradiance.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. A. Puliafito, R. F. Steinert, “Laser Surgery of the Lens: Experimental Studies,” Ophthalmology 90, 1007–1012 (1983).
    [PubMed]
  2. N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).
  3. M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).
  4. B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).
  5. C. J. Gomer, Ed., “Photodynamic Therapy,” Special Issue of Photochem. Photobiol.46, 561–952 (1987).
    [CrossRef]
  6. Y. Kuga, A. Ishimaru, A. P. Bruckner, “Experiments on Picosecond Pulse Propagation in a Diffuse Medium,” J. Opt. Soc. Am. A 73, 1812–1815 (1983).
    [CrossRef]
  7. B. Chance et al., “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. USA 85, (1988).
    [CrossRef] [PubMed]
  8. D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
    [CrossRef] [PubMed]
  9. M. S. Patterson, B. Chance, B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical Properties,” Appl. Opt. 28, 2331–2336 (1989).
    [CrossRef] [PubMed]
  10. B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).
  11. R. Nossal, R. F. Bonner, G. H. Weiss, “Influence of Path Length on Remote Optical Sensing of Properties of Biological Tissue,” Appl. Opt. 28, 2238–2244 (1989).
    [CrossRef] [PubMed]
  12. R. R. Alfano et al., “Time-Resolved Fluorescence,” Appl. Opt. (this issue) 28, (1989).
    [PubMed]
  13. L. L. Carter, E. D. Cashwell, “Particle-Transport Simulation with the Monte Carlo Method,” USERDA Technical Information Center, Oak Ridge, TN (1975).
    [CrossRef]
  14. E. D. Cashwell, C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).
  15. M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
    [CrossRef] [PubMed]
  16. S. A. Prahl, “Calculation of Light Distributions and Optical Properties of Tissue,” Ph.D. Dissertation, Department of Biomedical Engineering, U. Texas at Austin (1988).
  17. B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
    [CrossRef] [PubMed]
  18. P. A. Wilksch, F. Jacka, A. J. Blake, “Studies of Light Propagation Through Tissue,” In Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984) pp. 149–161.
  19. S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte-Carlo-Diffusion Theory Modelling of Light Distributions in Tissue,” Proc. Soc. Photo-Opt. Instrum. Eng. (1988).
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. I (Academic, New York, 1978).
  21. H. C. van de Hulst, Multiple Light Scattering, Vol. 2 (Academic, New York, 1980).
  22. S. L. Jacques, “Time-Resolved Reflectance Spectroscopy in Turbid Tissues,” IEEE-EMB (in press).
  23. K. M. Yoo, Y. Takiguchi, R. R. Alfano, “The Dynamical Effect of Weak Localization on the Light Scattering from Random Media Using Ultrafast Laser Technology,” Appl. Opt. 28, 2343–2349 (1989).
    [CrossRef] [PubMed]
  24. L. G. Henyey, J. L. Greenstein, “Diffuse Radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).
    [CrossRef]
  25. S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of HeNe Laser Light Scattering by Human Dermis,” Lasers Life Sci. 1, 309–333 (1987).
  26. S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1988).
    [CrossRef]

1989 (6)

R. R. Alfano et al., “Time-Resolved Fluorescence,” Appl. Opt. (this issue) 28, (1989).
[PubMed]

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
[CrossRef] [PubMed]

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

R. Nossal, R. F. Bonner, G. H. Weiss, “Influence of Path Length on Remote Optical Sensing of Properties of Biological Tissue,” Appl. Opt. 28, 2238–2244 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical Properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

K. M. Yoo, Y. Takiguchi, R. R. Alfano, “The Dynamical Effect of Weak Localization on the Light Scattering from Random Media Using Ultrafast Laser Technology,” Appl. Opt. 28, 2343–2349 (1989).
[CrossRef] [PubMed]

1988 (4)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1988).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte-Carlo-Diffusion Theory Modelling of Light Distributions in Tissue,” Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

B. Chance et al., “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. USA 85, (1988).
[CrossRef] [PubMed]

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

1987 (3)

N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).

M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of HeNe Laser Light Scattering by Human Dermis,” Lasers Life Sci. 1, 309–333 (1987).

1983 (3)

Y. Kuga, A. Ishimaru, A. P. Bruckner, “Experiments on Picosecond Pulse Propagation in a Diffuse Medium,” J. Opt. Soc. Am. A 73, 1812–1815 (1983).
[CrossRef]

C. A. Puliafito, R. F. Steinert, “Laser Surgery of the Lens: Experimental Studies,” Ophthalmology 90, 1007–1012 (1983).
[PubMed]

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

1941 (1)

L. G. Henyey, J. L. Greenstein, “Diffuse Radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Adam, G.

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Alfano, R. R.

Alter, C. A.

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of HeNe Laser Light Scattering by Human Dermis,” Lasers Life Sci. 1, 309–333 (1987).

Anderson, R. R.

M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).

N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).

Arridge, S.

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Birngruber, R.

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

Blake, A. J.

P. A. Wilksch, F. Jacka, A. J. Blake, “Studies of Light Propagation Through Tissue,” In Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984) pp. 149–161.

Bonner, R. F.

Bruckner, A. P.

Y. Kuga, A. Ishimaru, A. P. Bruckner, “Experiments on Picosecond Pulse Propagation in a Diffuse Medium,” J. Opt. Soc. Am. A 73, 1812–1815 (1983).
[CrossRef]

Carter, L. L.

L. L. Carter, E. D. Cashwell, “Particle-Transport Simulation with the Monte Carlo Method,” USERDA Technical Information Center, Oak Ridge, TN (1975).
[CrossRef]

Cashwell, E. D.

L. L. Carter, E. D. Cashwell, “Particle-Transport Simulation with the Monte Carlo Method,” USERDA Technical Information Center, Oak Ridge, TN (1975).
[CrossRef]

E. D. Cashwell, C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Chance, B.

Cope, M.

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Delpy, D. M.

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Deutsch, T. F.

N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).

M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).

Dobi, E. T.

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

Everett, C. J.

E. D. Cashwell, C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

Flock, S. T.

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1988).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte-Carlo-Diffusion Theory Modelling of Light Distributions in Tissue,” Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Fujimoto, J. G.

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

Greenstein, J. L.

L. G. Henyey, J. L. Greenstein, “Diffuse Radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Hefetz, Y.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Henyey, L. G.

L. G. Henyey, J. L. Greenstein, “Diffuse Radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

Ishimaru, A.

Y. Kuga, A. Ishimaru, A. P. Bruckner, “Experiments on Picosecond Pulse Propagation in a Diffuse Medium,” J. Opt. Soc. Am. A 73, 1812–1815 (1983).
[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. I (Academic, New York, 1978).

Jacka, F.

P. A. Wilksch, F. Jacka, A. J. Blake, “Studies of Light Propagation Through Tissue,” In Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984) pp. 149–161.

Jacques, S.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Jacques, S. L.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of HeNe Laser Light Scattering by Human Dermis,” Lasers Life Sci. 1, 309–333 (1987).

S. L. Jacques, “Time-Resolved Reflectance Spectroscopy in Turbid Tissues,” IEEE-EMB (in press).

Keijzer, M.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
[CrossRef] [PubMed]

Kuga, Y.

Y. Kuga, A. Ishimaru, A. P. Bruckner, “Experiments on Picosecond Pulse Propagation in a Diffuse Medium,” J. Opt. Soc. Am. A 73, 1812–1815 (1983).
[CrossRef]

LaMuraglia, G. M.

M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).

Madsen, S.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Nishioka, N. S.

N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).

Nossal, R.

Park, Y.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Patterson, M.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Patterson, M. S.

M. S. Patterson, B. Chance, B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical Properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1988).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte-Carlo-Diffusion Theory Modelling of Light Distributions in Tissue,” Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Prahl, S. A.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
[CrossRef] [PubMed]

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of HeNe Laser Light Scattering by Human Dermis,” Lasers Life Sci. 1, 309–333 (1987).

S. A. Prahl, “Calculation of Light Distributions and Optical Properties of Tissue,” Ph.D. Dissertation, Department of Biomedical Engineering, U. Texas at Austin (1988).

Prince, M. R.

M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).

Puliafito, C. A.

C. A. Puliafito, R. F. Steinert, “Laser Surgery of the Lens: Experimental Studies,” Ophthalmology 90, 1007–1012 (1983).
[PubMed]

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

Schoenlein, R. W.

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

Steinert, R. F.

C. A. Puliafito, R. F. Steinert, “Laser Surgery of the Lens: Experimental Studies,” Ophthalmology 90, 1007–1012 (1983).
[PubMed]

Stern, B.

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

Takiguchi, Y.

Teng, P.

N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).

van de Hulst, H. C.

H. C. van de Hulst, Multiple Light Scattering, Vol. 2 (Academic, New York, 1980).

van der See, P.

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Weiss, G. H.

Welch, A. J.

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
[CrossRef] [PubMed]

Wilksch, P. A.

P. A. Wilksch, F. Jacka, A. J. Blake, “Studies of Light Propagation Through Tissue,” In Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984) pp. 149–161.

Wilson, B.

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Wilson, B. C.

M. S. Patterson, B. Chance, B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical Properties,” Appl. Opt. 28, 2331–2336 (1989).
[CrossRef] [PubMed]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1988).
[CrossRef]

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte-Carlo-Diffusion Theory Modelling of Light Distributions in Tissue,” Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Wray, S.

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Yoo, K. M.

Appl. Opt. (4)

Astrophys. J. (1)

L. G. Henyey, J. L. Greenstein, “Diffuse Radiation in the Galaxy,” Astrophys. J. 93, 70–83 (1941).
[CrossRef]

J. Opt. Soc. Am. A (1)

Y. Kuga, A. Ishimaru, A. P. Bruckner, “Experiments on Picosecond Pulse Propagation in a Diffuse Medium,” J. Opt. Soc. Am. A 73, 1812–1815 (1983).
[CrossRef]

Laser Life Sci. (1)

N. S. Nishioka, P. Teng, T. F. Deutsch, R. R. Anderson, “Mechanism of Laser-Induced Fragmentation of Urinary and Biliary Calculi,” Laser Life Sci. 1, 231–245 (1987).

Lasers Life Sci. (1)

S. L. Jacques, C. A. Alter, S. A. Prahl, “Angular Dependence of HeNe Laser Light Scattering by Human Dermis,” Lasers Life Sci. 1, 309–333 (1987).

Lasers Surg. Med (1)

M. Keijzer, S. L. Jacques, S. A. Prahl, A. J. Welch, “Light Distributions in Artery Tissue: Monte Carlo Simulations for Finite-Diameter Laser Beams,” Lasers Surg. Med 9, 148–154 (1989).
[CrossRef] [PubMed]

Med. Phys. (2)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Total Attenuation Coefficients and Scattering Phase Functions of Tissues and Phantom Materials at 633 nm,” Med. Phys. 14, 835–841 (1988).
[CrossRef]

B. C. Wilson, G. Adam, “A Monte Carlo Model for the Absorption and Flux Distributions of Light in Tissue,” Med. Phys. 10, 824–830 (1983).
[CrossRef] [PubMed]

Ophthalmology (1)

C. A. Puliafito, R. F. Steinert, “Laser Surgery of the Lens: Experimental Studies,” Ophthalmology 90, 1007–1012 (1983).
[PubMed]

Phys. Med. Biol (1)

D. M. Delpy, M. Cope, P. van der See, S. Arridge, S. Wray, J. Wyatt, “Estimation of Optical Pathlength Through Tissue from Direct Time-of-Flight Measurements,” Phys. Med. Biol 33, 1433–1442 (1988).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

B. Chance et al., “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. USA 85, (1988).
[CrossRef] [PubMed]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

B. Wilson, Y. Park, Y. Hefetz, M. Patterson, S. Madsen, S. Jacques, “The Potential of Time-Resolved Reflectance Measurements for the Noninvasive Determination of Tissue Optical Properties,” Proc. Soc. Photo-Opt. Instrum. Eng. (1989).

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

S. T. Flock, B. C. Wilson, M. S. Patterson, “Hybrid Monte-Carlo-Diffusion Theory Modelling of Light Distributions in Tissue,” Proc. Soc. Photo-Opt. Instrum. Eng. (1988).

Proc. Soc. Photo-Opt. Intrum. Eng. (1)

M. R. Prince, R. R. Anderson, T. F. Deutsch, G. M. LaMuraglia, “Pulsed Laser Ablation of Calcified Plaque,” Proc. Soc. Photo-Opt. Intrum. Eng., 906–956 (1987).

Other (9)

B. Stern, R. W. Schoenlein, C. A. Puliafito, E. T. Dobi, R. Birngruber, J. G. Fujimoto, “Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Laser Pulses at 532 and 625 Nanometers,” Arch. Ophththalmol. (in press).

C. J. Gomer, Ed., “Photodynamic Therapy,” Special Issue of Photochem. Photobiol.46, 561–952 (1987).
[CrossRef]

A. Ishimaru, Wave Propagation and Scattering in Random Media, Vol. I (Academic, New York, 1978).

H. C. van de Hulst, Multiple Light Scattering, Vol. 2 (Academic, New York, 1980).

S. L. Jacques, “Time-Resolved Reflectance Spectroscopy in Turbid Tissues,” IEEE-EMB (in press).

S. A. Prahl, “Calculation of Light Distributions and Optical Properties of Tissue,” Ph.D. Dissertation, Department of Biomedical Engineering, U. Texas at Austin (1988).

L. L. Carter, E. D. Cashwell, “Particle-Transport Simulation with the Monte Carlo Method,” USERDA Technical Information Center, Oak Ridge, TN (1975).
[CrossRef]

E. D. Cashwell, C. J. Everett, A Practical Manual on the Monte Carlo Method for Random Walk Problems (Pergamon, New York, 1959).

P. A. Wilksch, F. Jacka, A. J. Blake, “Studies of Light Propagation Through Tissue,” In Porphyrin Localization and Treatment of Tumors, D. R. Doiron, C. J. Gomer, Eds. (Alan R. Liss, New York, 1984) pp. 149–161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Snapshots of light distributions following the laser impulse. The fluence ϕ is plotted at several times (2, 10, 20, 46 ps) after a 1-J/cm2 impulse (Δt resolution 4.6 fs). The dashed line indicates the magnitude of the primary impulse as it moves through the tissue and suffers total attenuation due to absorption plus scattering.

Fig. 2
Fig. 2

Effect of anisotropy and scattering coefficient on impulse response. The fluence ϕ is plotted at 2 ps after a 1-J/cm2 impulse (Δt resolution 4.6 fs). (A) A range of anisotropy values, g = 0–0.95, at constant absorption, μa = 1 cm−1, and scattering, μs = 100 cm−1. (B) A range of scattering coefficients, μs = 30–1000 cm−1, at constant μa = 1 cm−1 and g = 0.8. The dashed line indicates the magnitude of the primary impulse as it moves through the tissue and suffers total attenuation due to absorption plus scattering.

Fig. 3
Fig. 3

Summary of impulse penetration and surface fluence. (A) The penetration of the primary impulse (i.e., unabsorbed, unscattered) is characterized by an attenuation coefficient, μp = μa + χμs. The factor χ is plotted vs anisotropy, g. (B) The surface fluence ϕsurface left behind by scattering of the primary beam is dependent on the Rt, μs, μa, and g. Rearrangement as the function in Eq. (9) shows the (1 − g) dependence of the surface fluence. (For both figures, □, μs = 100 cm−1; ⋄, μs = 30–1000 cm−1. μa = 1 cm−1.)

Fig. 4
Fig. 4

Effect of anisotropy and scattering coefficient on a 4-ps laser pulse. The fluence ϕ is plotted at 4 ps when the trailing edge of a 1-J/cm2 4-ps laser pulse has just entered a tissue. The unscattered unabsorbed laser pulse is shown in figures for reference. (A) A range of anisotropy values, g = 0, 0.8, 0.95, at constant absorption, μa = 1 cm−1, and scattering, μs = 100 cm−1. (B) A range of scattering coefficients, μs = 30, 100, 1000 cm−1, at constants μa = 1 cm−1, g = 0.8.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

q imp [ i , j ] q [ i , j ] + ( 1 R t ) exp ( μ a c t / n ) N μ a Δ l where i = z Δ z , where j = t Δ l n / c .
R t [ j ] R t [ j ] + n r + R sp N .
ϕ imp [ i , j ] = ( 1 J / cm 2 ) q imp [ i , j ] Δ z 1 μ a .
q [ i ] q [ i ] + ( 1 R t ) exp ( μ a c t / n ) N μ a Δ l E [ j ] where i = z Δ z , where j = t snapshot t Δ l n / c .
μ p = ln ( ϕ p ) / d ,
χ = μ p μ a μ s .
x exp [ g 2 ( 1 g ) D ] ,
ϕ surface 4 3 π μ s ( 1 g ) Δ l ( 1 R t ) exp ( μ a c t / n ) ,
3 π ϕ surface 4 μ s Δ l ( 1 R t ) exp ( μ a c t / n ) = 1 g .

Metrics