Abstract

An experimental method for determining the crossover function is studied for those days when a light mist is observed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Halldorsson, J. Langerholc, “Geometrical Form Factors for the Lidar Function,” Appl. Opt. 17, 240–244 (1978).
    [Crossref] [PubMed]
  2. K. Sassen, G. C. Dodd, “Lidar Crossover Function and Misalignment Effects,” Appl. Opt. 21, 3162–3165 (1982).
    [Crossref] [PubMed]
  3. Y. Sasano, H. Shimizu, N. Takeuchi, M. Okuda, “Geometrical Form Factor in the Laser Radar Equation: an Experimental Determination,” Appl. Opt. 18, 3908–3910 (1979).
    [Crossref] [PubMed]
  4. N. Takeuchi, N. Sugimoto, H. Baba, K. Sakurai, “Random Modulation cw Lidar,” Appl. Opt. 22, 1382–1386 (1983).
    [Crossref] [PubMed]
  5. R. T. H. Collis, “Lidar,” Appl. Opt. 9, 1782–1788 (1970).
    [Crossref] [PubMed]
  6. R. T. H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1966).
    [Crossref]

1983 (1)

1982 (1)

1979 (1)

1978 (1)

1970 (1)

1966 (1)

R. T. H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1966).
[Crossref]

Baba, H.

Collis, R. T. H.

Dodd, G. C.

Halldorsson, T.

Langerholc, J.

Okuda, M.

Sakurai, K.

Sasano, Y.

Sassen, K.

Shimizu, H.

Sugimoto, N.

Takeuchi, N.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Distributions of the crossover function Y(R) (solid lines) with their standard deviations (broken lines) calculated by Sasano’s method.

Fig. 2
Fig. 2

Same as Fig. 1, except for using the method derived in this Letter.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P r ( R ) = P t L β ( R ) A Y ( R ) R 2 T 2 ( R ) , T ( R ) = exp [ 0 R σ ( r ) d r ] , R = c t / 2 , L = c η / 2 ( = 9 m ) .
ln [ R 2 P r ( R ) ] ¯ t = ln ( P t L A ) + ln Y ( R ) + ln β ( R ) ¯ t 2 0 R σ ( R ) ¯ t d r ;
ln Y ( R ) = 2 σ ¯ t ( R R * ) + ln [ R 2 P r ( R ) ] ¯ t ln [ R * 2 P r ( R * ) ] ¯ t .

Metrics