Abstract

The wave particle duality inherent in the propagation of light or particles can be exploited for energy efficient computing leading to energy requirement per calculation below kT. Although several reversible computers with similar characteristics were proposed in the past, only optical implementations can be made with the present technology.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. 5, 183–000 (1961).
    [CrossRef]
  2. E. Fredkin, T. Toffoli, “Conservative Logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
    [CrossRef]
  3. J. Shamir, H. J. Caulfield, W. Miceli, R. J. Seymor, “Optical Computing and the Fredkin Gate,” Appl. Opt. 25, 1604–1607 (1986).
    [CrossRef] [PubMed]
  4. R. Cuykendall, “Three-Port Reversible Logic,” Appl. Opt. 27, 1772–1779 (1988).
    [CrossRef] [PubMed]
  5. R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, No. 2, 11–20 (1985); Found. Phys. 16, 507–531 (1986).
    [CrossRef]
  6. C. H. Bennett, R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am. 253, No. 1, 48–56 (1985).
    [CrossRef]
  7. D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. London Ser. A 400, 97–117 (1985).
    [CrossRef]
  8. A. Peres, “Reversible Logic and Quantum Computers,” Phys. Rev. A 32, 3266–3276 (1985).
    [CrossRef] [PubMed]
  9. R. Landauer, “Computation and Physics: Wheeler’s Meaning Circuit?,” Found. Phys. 16, 551–564 (1986).
    [CrossRef]
  10. A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–000 (1964).
    [CrossRef]
  11. H. J. Caulfield, “Parallel N4 Weighted Optical Interconnections,” Appl. Opt. 26, 4039–4040 (1987).
    [CrossRef] [PubMed]
  12. J. Shamir, H. J. Caulfield, M. M. Mirsalehi, “Improved Architectures for Massive Holographic Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 283–287 (1988).
  13. J. Shamir, H. J. Caulfield, R. B. Johnson, “Massive Holographic Interconnections and Their Limitations,” Appl. Opt. 28, 311–324 (1989).
    [CrossRef] [PubMed]
  14. J. Shamir, “Fundamental Speed Limitations on Parallel Processing,” Appl. Opt. 26, 1567 (1987).
    [CrossRef] [PubMed]

1989

1988

J. Shamir, H. J. Caulfield, M. M. Mirsalehi, “Improved Architectures for Massive Holographic Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 283–287 (1988).

R. Cuykendall, “Three-Port Reversible Logic,” Appl. Opt. 27, 1772–1779 (1988).
[CrossRef] [PubMed]

1987

1986

J. Shamir, H. J. Caulfield, W. Miceli, R. J. Seymor, “Optical Computing and the Fredkin Gate,” Appl. Opt. 25, 1604–1607 (1986).
[CrossRef] [PubMed]

R. Landauer, “Computation and Physics: Wheeler’s Meaning Circuit?,” Found. Phys. 16, 551–564 (1986).
[CrossRef]

1985

R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, No. 2, 11–20 (1985); Found. Phys. 16, 507–531 (1986).
[CrossRef]

C. H. Bennett, R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am. 253, No. 1, 48–56 (1985).
[CrossRef]

D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. London Ser. A 400, 97–117 (1985).
[CrossRef]

A. Peres, “Reversible Logic and Quantum Computers,” Phys. Rev. A 32, 3266–3276 (1985).
[CrossRef] [PubMed]

1982

E. Fredkin, T. Toffoli, “Conservative Logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

1964

A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–000 (1964).
[CrossRef]

1961

R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. 5, 183–000 (1961).
[CrossRef]

Bennett, C. H.

C. H. Bennett, R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am. 253, No. 1, 48–56 (1985).
[CrossRef]

Caulfield, H. J.

Cuykendall, R.

Deutsch, D.

D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. London Ser. A 400, 97–117 (1985).
[CrossRef]

Feynman, R. P.

R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, No. 2, 11–20 (1985); Found. Phys. 16, 507–531 (1986).
[CrossRef]

Fredkin, E.

E. Fredkin, T. Toffoli, “Conservative Logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Johnson, R. B.

Landauer, R.

R. Landauer, “Computation and Physics: Wheeler’s Meaning Circuit?,” Found. Phys. 16, 551–564 (1986).
[CrossRef]

C. H. Bennett, R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am. 253, No. 1, 48–56 (1985).
[CrossRef]

R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. 5, 183–000 (1961).
[CrossRef]

Miceli, W.

Mirsalehi, M. M.

J. Shamir, H. J. Caulfield, M. M. Mirsalehi, “Improved Architectures for Massive Holographic Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 283–287 (1988).

Peres, A.

A. Peres, “Reversible Logic and Quantum Computers,” Phys. Rev. A 32, 3266–3276 (1985).
[CrossRef] [PubMed]

Seymor, R. J.

Shamir, J.

Toffoli, T.

E. Fredkin, T. Toffoli, “Conservative Logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

VanderLugt, A.

A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–000 (1964).
[CrossRef]

Appl. Opt.

Found. Phys.

R. Landauer, “Computation and Physics: Wheeler’s Meaning Circuit?,” Found. Phys. 16, 551–564 (1986).
[CrossRef]

IBM J. Res.

R. Landauer, “Irreversibility and Heat Generation in the Computing Process,” IBM J. Res. 5, 183–000 (1961).
[CrossRef]

IEEE Trans. Inf. Theory

A. VanderLugt, “Signal Detection by Complex Spatial Filtering,” IEEE Trans. Inf. Theory IT-10, 139–000 (1964).
[CrossRef]

Int. J. Theor. Phys.

E. Fredkin, T. Toffoli, “Conservative Logic,” Int. J. Theor. Phys. 21, 219–253 (1982).
[CrossRef]

Opt. News

R. P. Feynman, “Quantum Mechanical Computers,” Opt. News 11, No. 2, 11–20 (1985); Found. Phys. 16, 507–531 (1986).
[CrossRef]

Phys. Rev. A

A. Peres, “Reversible Logic and Quantum Computers,” Phys. Rev. A 32, 3266–3276 (1985).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A

D. Deutsch, “Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer,” Proc. R. Soc. London Ser. A 400, 97–117 (1985).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

J. Shamir, H. J. Caulfield, M. M. Mirsalehi, “Improved Architectures for Massive Holographic Interconnection Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 963, 283–287 (1988).

Sci. Am.

C. H. Bennett, R. Landauer, “The Fundamental Physical Limits of Computation,” Sci. Am. 253, No. 1, 48–56 (1985).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Coherent Fourier correlator: I, F, and D are the input, filter, and detector planes, respectively, each with N × N pixels. The Fourier transforming lenses are L situated at a focal distance from each plane.

Fig. 2
Fig. 2

Architecture for a coherent holographic interconnection network: R, coherent reference beam; H, hologram array; SLM, input spatial light modulator; L, lenses; D, detector array.

Fig. 3
Fig. 3

Architecture for partially incoherent interconnection network. LAD, laser diode array; H, hologram array; D, detector array.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

E w p = m h ν ,
e w p = E w p w = m h ν w .
e d k T ,
E d w k T .
h ν 100 k T .
E w p = m h ν 100 m k T .
e d e w p = E d E w p w 100 m .
e w p = 100 m k T N 4 + N 2 ; E d ( N 4 + N 2 ) k T
e w p 10 7 k T ; E w p 10 5 k T
e d k T ; E d 10 2 k T .
e w p 10 1 k T .

Metrics