Abstract

A new method for emission–absorption pyrometric measurements has been developed to account for the effects of scattering particles suspended in an absorbing gas. In this paper, the principles of this new technique are outlined and the results of a series of verification experiments are presented.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. H. Paul, S. A. Self, “Method for Spectroradiometric Temperature Measurements in Two Phase Flows. 1: Theory,” Appl. Opt. 28, 2143–2149 (1989).
    [CrossRef] [PubMed]
  2. P. H. Paul, “Spectroradiometric Temperature Measurements in Two-Phase Combustion Plasmas,” Doctoral Dissertation, Stanford U. (1984), HTGL report T-238.
  3. P. H. Paul, S. A. Self, “The Use of Quartz-Halogen Lamps for Spectroradiometric Temperature Measurements,” Rev. Sci. Instrum. 59, 260–264 (1988).
    [CrossRef]
  4. G. N. Plass, “Temperature Dependence of the Mie Scattering and Absorption Cross Sections for Aluminum Oxide,” Appl. Opt. 4, 1616–1619 (1965).
    [CrossRef]
  5. E. J. Mularez, M. C. Yuen, “An Experimental Investigation of Radiative Properties of Aluminum Oxide Particles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1553–1568 (1972).
    [CrossRef]
  6. I. H. Malitson, “Refraction and Dispersion of Synthetic Sapphire,” J. Opt. Soc. Am. 52, 1377–1379 (1962).
    [CrossRef]
  7. E. J. Mularez, “An Experimental Investigation of the Radiative Properties of Solid and Molten Alumina,” Doctoral Dissertation, Northwestern U. (1971).
  8. J. M. Adams, “A Determination of the Emissive Properties of a Cloud of Molten Alumina Particles,” J. Quant. Spectrosc. Radiat. Transfer 7, 273–277 (1967).
    [CrossRef]
  9. D. L. Thomas, “Problems in Applying the Line Reversal Method of Temperature Measurement to Flames,” Combust. Flame 12, 541–549 (1968).
    [CrossRef]
  10. C. M. Chu, J. A. Leacock, J. C. Chen, S. W. Churchill, “Numerical Solutions for Multiple, Anisotropic Scattering,” Electromagnetic Waves V5, Proceedings of the Interdisciplinary Conference on Electromagnetic Waves, M. Kerker, Ed. (Plenum, New York, 1963).
  11. E. H. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Revs. 16, 527–610 (1974).
    [CrossRef]
  12. C. M. Chu, G. C. Clark, S. W. Churchill, “Tables of Angular Distribution Coefficients for Light-Scattering by Spheres,” Engineering Research Institute Report (U. Michigan P., Ann Arbor, MI, 1957).

1989 (1)

1988 (1)

P. H. Paul, S. A. Self, “The Use of Quartz-Halogen Lamps for Spectroradiometric Temperature Measurements,” Rev. Sci. Instrum. 59, 260–264 (1988).
[CrossRef]

1974 (1)

E. H. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Revs. 16, 527–610 (1974).
[CrossRef]

1972 (1)

E. J. Mularez, M. C. Yuen, “An Experimental Investigation of Radiative Properties of Aluminum Oxide Particles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1553–1568 (1972).
[CrossRef]

1968 (1)

D. L. Thomas, “Problems in Applying the Line Reversal Method of Temperature Measurement to Flames,” Combust. Flame 12, 541–549 (1968).
[CrossRef]

1967 (1)

J. M. Adams, “A Determination of the Emissive Properties of a Cloud of Molten Alumina Particles,” J. Quant. Spectrosc. Radiat. Transfer 7, 273–277 (1967).
[CrossRef]

1965 (1)

1962 (1)

Adams, J. M.

J. M. Adams, “A Determination of the Emissive Properties of a Cloud of Molten Alumina Particles,” J. Quant. Spectrosc. Radiat. Transfer 7, 273–277 (1967).
[CrossRef]

Chen, J. C.

C. M. Chu, J. A. Leacock, J. C. Chen, S. W. Churchill, “Numerical Solutions for Multiple, Anisotropic Scattering,” Electromagnetic Waves V5, Proceedings of the Interdisciplinary Conference on Electromagnetic Waves, M. Kerker, Ed. (Plenum, New York, 1963).

Chu, C. M.

C. M. Chu, J. A. Leacock, J. C. Chen, S. W. Churchill, “Numerical Solutions for Multiple, Anisotropic Scattering,” Electromagnetic Waves V5, Proceedings of the Interdisciplinary Conference on Electromagnetic Waves, M. Kerker, Ed. (Plenum, New York, 1963).

C. M. Chu, G. C. Clark, S. W. Churchill, “Tables of Angular Distribution Coefficients for Light-Scattering by Spheres,” Engineering Research Institute Report (U. Michigan P., Ann Arbor, MI, 1957).

Churchill, S. W.

C. M. Chu, G. C. Clark, S. W. Churchill, “Tables of Angular Distribution Coefficients for Light-Scattering by Spheres,” Engineering Research Institute Report (U. Michigan P., Ann Arbor, MI, 1957).

C. M. Chu, J. A. Leacock, J. C. Chen, S. W. Churchill, “Numerical Solutions for Multiple, Anisotropic Scattering,” Electromagnetic Waves V5, Proceedings of the Interdisciplinary Conference on Electromagnetic Waves, M. Kerker, Ed. (Plenum, New York, 1963).

Clark, G. C.

C. M. Chu, G. C. Clark, S. W. Churchill, “Tables of Angular Distribution Coefficients for Light-Scattering by Spheres,” Engineering Research Institute Report (U. Michigan P., Ann Arbor, MI, 1957).

Hansen, E. H.

E. H. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Revs. 16, 527–610 (1974).
[CrossRef]

Leacock, J. A.

C. M. Chu, J. A. Leacock, J. C. Chen, S. W. Churchill, “Numerical Solutions for Multiple, Anisotropic Scattering,” Electromagnetic Waves V5, Proceedings of the Interdisciplinary Conference on Electromagnetic Waves, M. Kerker, Ed. (Plenum, New York, 1963).

Malitson, I. H.

Mularez, E. J.

E. J. Mularez, M. C. Yuen, “An Experimental Investigation of Radiative Properties of Aluminum Oxide Particles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1553–1568 (1972).
[CrossRef]

E. J. Mularez, “An Experimental Investigation of the Radiative Properties of Solid and Molten Alumina,” Doctoral Dissertation, Northwestern U. (1971).

Paul, P. H.

P. H. Paul, S. A. Self, “Method for Spectroradiometric Temperature Measurements in Two Phase Flows. 1: Theory,” Appl. Opt. 28, 2143–2149 (1989).
[CrossRef] [PubMed]

P. H. Paul, S. A. Self, “The Use of Quartz-Halogen Lamps for Spectroradiometric Temperature Measurements,” Rev. Sci. Instrum. 59, 260–264 (1988).
[CrossRef]

P. H. Paul, “Spectroradiometric Temperature Measurements in Two-Phase Combustion Plasmas,” Doctoral Dissertation, Stanford U. (1984), HTGL report T-238.

Plass, G. N.

Self, S. A.

P. H. Paul, S. A. Self, “Method for Spectroradiometric Temperature Measurements in Two Phase Flows. 1: Theory,” Appl. Opt. 28, 2143–2149 (1989).
[CrossRef] [PubMed]

P. H. Paul, S. A. Self, “The Use of Quartz-Halogen Lamps for Spectroradiometric Temperature Measurements,” Rev. Sci. Instrum. 59, 260–264 (1988).
[CrossRef]

Thomas, D. L.

D. L. Thomas, “Problems in Applying the Line Reversal Method of Temperature Measurement to Flames,” Combust. Flame 12, 541–549 (1968).
[CrossRef]

Travis, L. D.

E. H. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Revs. 16, 527–610 (1974).
[CrossRef]

Yuen, M. C.

E. J. Mularez, M. C. Yuen, “An Experimental Investigation of Radiative Properties of Aluminum Oxide Particles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1553–1568 (1972).
[CrossRef]

Appl. Opt. (2)

Combust. Flame (1)

D. L. Thomas, “Problems in Applying the Line Reversal Method of Temperature Measurement to Flames,” Combust. Flame 12, 541–549 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (2)

J. M. Adams, “A Determination of the Emissive Properties of a Cloud of Molten Alumina Particles,” J. Quant. Spectrosc. Radiat. Transfer 7, 273–277 (1967).
[CrossRef]

E. J. Mularez, M. C. Yuen, “An Experimental Investigation of Radiative Properties of Aluminum Oxide Particles,” J. Quant. Spectrosc. Radiat. Transfer 12, 1553–1568 (1972).
[CrossRef]

Rev. Sci. Instrum. (1)

P. H. Paul, S. A. Self, “The Use of Quartz-Halogen Lamps for Spectroradiometric Temperature Measurements,” Rev. Sci. Instrum. 59, 260–264 (1988).
[CrossRef]

Space Sci. Revs. (1)

E. H. Hansen, L. D. Travis, “Light Scattering in Planetary Atmospheres,” Space Sci. Revs. 16, 527–610 (1974).
[CrossRef]

Other (4)

C. M. Chu, G. C. Clark, S. W. Churchill, “Tables of Angular Distribution Coefficients for Light-Scattering by Spheres,” Engineering Research Institute Report (U. Michigan P., Ann Arbor, MI, 1957).

C. M. Chu, J. A. Leacock, J. C. Chen, S. W. Churchill, “Numerical Solutions for Multiple, Anisotropic Scattering,” Electromagnetic Waves V5, Proceedings of the Interdisciplinary Conference on Electromagnetic Waves, M. Kerker, Ed. (Plenum, New York, 1963).

P. H. Paul, “Spectroradiometric Temperature Measurements in Two-Phase Combustion Plasmas,” Doctoral Dissertation, Stanford U. (1984), HTGL report T-238.

E. J. Mularez, “An Experimental Investigation of the Radiative Properties of Solid and Molten Alumina,” Doctoral Dissertation, Northwestern U. (1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Figure 1
Figure 1

Schematic of the emission-absorption pyrometer optical system (AS—aperture stop, B—beamsplitter, C—chopper, DE—signal demultiplexer, D—detector, F—filter, L—reference lamp, M—mirror, P—pyrometer, PS—power supply).

Figure 2
Figure 2

Measured particle-size distribution.

Figure 3
Figure 3

Measured temperature using different levels of correction to account for the effects of scattering.

Figure 4
Figure 4

Measured total albedo.

Figure 5
Figure 5

The effect of assuming different particle mean radius on the anisotropic first-order correction.

Figure 6
Figure 6

The effect of assuming different real refractive index for the particles on the anisotropic first order correction.

Figure 7
Figure 7

The effect of differing ratios of the total optical depth on differing orders of the scattering correction.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I λ ( d ) = I λ ( B ) ( T L ) exp ( Γ λ ) + I λ ( B ) ( T L ) Φ ( ω λ , Γ λ , U λ ) ,
Γ λ ( α λ G + α λ P + σ λ ) d ,
ω λ = σ λ α λ G + α λ P + σ λ ,
U λ α λ P σ λ { exp [ C 2 λ ( 1 T P 1 T G ) ] 1 } .
Γ λ = ln S G + L S G S L ,
T G = T L 1 λ T L C 2 ln [ S G S L 1 Φ ( ω λ , Γ λ , U λ ) ] .
Φ = 1 exp ( Γ λ ) = S G + S L S G + L S L .
Φ 1 = [ 1 ( 1 U λ ) ω λ ] [ ( 1 + ω λ ) Λ ( Γ λ ) ω λ l = 0 Λ l ( Γ λ ) ] ,
Δ T G T G = [ 1 + C 2 λ T G / ln ( 1 ω λ ) ] 1 .
Δ T G T G = [ 1 + C 2 λ T G / ln ( 1 + ω λ { 1 Λ 0 ( Γ λ ) [ 1 exp ( Γ λ ) ] } ) ] 1 ,

Metrics