Abstract

A unique photometer capable of measuring line intensities of <0.1% of the bright background continuum (5 × 106/Å) has been developed and successfully commissioned for the measurement of daytime OI 630.0-nm emission from the thermosphere. The photometer employs a low resolution (104) Fabry-Perot etalon, temperature tuned narrowband (3-Å) interference filter, radial chopper, and up/down counting system. The optimum choice of the photometer parameters and a unique method of eliminating the background enabled us to overcome the limitations of the earlier attempts to make measurements on such phenomena as dayglow and has opened up a wide range of uses. However, at present, it is being discussed only in the context of dayglow measurements.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Blamont, T. M. Donahue, “The Dayglow of the Sodium D lines,” J. Geophys. Res. 66, 1407 (1961).
    [CrossRef]
  2. M. Gadsden, T. M. Donahue, J. E. Blamont, “On the Measurement of Sodium Dayglow Emission by Means of a Zeeman Photometer,” J. Geophys. Res. 71, 5047 (1966).
    [CrossRef]
  3. A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Widths—III,” Planet. Space Sci. 13, 551 (1965).
    [CrossRef]
  4. A. H. Jarrett, M. J. Hoey, “A Ground-level Photographic Observation of the Day Airglow Emission of Atomic Oxygen at 6300 Å,” Planet. Space Sci. 11, 1251 (1963).
    [CrossRef]
  5. J. F. Noxon, R. M. Goody, “Observtion of Day Airglow Emission,” J. Atmos. Sci. 19, 342 (1962).
    [CrossRef]
  6. J. F. Noxon, A. E. Johanson, “Changes in Thermospheric Molecular Oxygen Abundance inferred from Twilight 6300 Å Airglow,” Planet. Space Sci. 20, 2125 (1972).
    [CrossRef]
  7. J. N. Desai, B. G. Anandarao, R. Raghavarao, “Photometer for Detection of Lithium Release in Daytime,” Appl. Opt. 18, 420 (1979).
    [CrossRef] [PubMed]
  8. G. Courtes, R. Louise, G. Monnet, “Sur une Methode de Determination des Temperatures Electroniques des Regions—II”, Ann. Astrophys. 31, 493 (1968).

1979 (1)

1972 (1)

J. F. Noxon, A. E. Johanson, “Changes in Thermospheric Molecular Oxygen Abundance inferred from Twilight 6300 Å Airglow,” Planet. Space Sci. 20, 2125 (1972).
[CrossRef]

1968 (1)

G. Courtes, R. Louise, G. Monnet, “Sur une Methode de Determination des Temperatures Electroniques des Regions—II”, Ann. Astrophys. 31, 493 (1968).

1966 (1)

M. Gadsden, T. M. Donahue, J. E. Blamont, “On the Measurement of Sodium Dayglow Emission by Means of a Zeeman Photometer,” J. Geophys. Res. 71, 5047 (1966).
[CrossRef]

1965 (1)

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Widths—III,” Planet. Space Sci. 13, 551 (1965).
[CrossRef]

1963 (1)

A. H. Jarrett, M. J. Hoey, “A Ground-level Photographic Observation of the Day Airglow Emission of Atomic Oxygen at 6300 Å,” Planet. Space Sci. 11, 1251 (1963).
[CrossRef]

1962 (1)

J. F. Noxon, R. M. Goody, “Observtion of Day Airglow Emission,” J. Atmos. Sci. 19, 342 (1962).
[CrossRef]

1961 (1)

J. E. Blamont, T. M. Donahue, “The Dayglow of the Sodium D lines,” J. Geophys. Res. 66, 1407 (1961).
[CrossRef]

Anandarao, B. G.

Bens, A. R.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Widths—III,” Planet. Space Sci. 13, 551 (1965).
[CrossRef]

Blamont, J. E.

M. Gadsden, T. M. Donahue, J. E. Blamont, “On the Measurement of Sodium Dayglow Emission by Means of a Zeeman Photometer,” J. Geophys. Res. 71, 5047 (1966).
[CrossRef]

J. E. Blamont, T. M. Donahue, “The Dayglow of the Sodium D lines,” J. Geophys. Res. 66, 1407 (1961).
[CrossRef]

Cogger, L. L.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Widths—III,” Planet. Space Sci. 13, 551 (1965).
[CrossRef]

Courtes, G.

G. Courtes, R. Louise, G. Monnet, “Sur une Methode de Determination des Temperatures Electroniques des Regions—II”, Ann. Astrophys. 31, 493 (1968).

Desai, J. N.

Donahue, T. M.

M. Gadsden, T. M. Donahue, J. E. Blamont, “On the Measurement of Sodium Dayglow Emission by Means of a Zeeman Photometer,” J. Geophys. Res. 71, 5047 (1966).
[CrossRef]

J. E. Blamont, T. M. Donahue, “The Dayglow of the Sodium D lines,” J. Geophys. Res. 66, 1407 (1961).
[CrossRef]

Gadsden, M.

M. Gadsden, T. M. Donahue, J. E. Blamont, “On the Measurement of Sodium Dayglow Emission by Means of a Zeeman Photometer,” J. Geophys. Res. 71, 5047 (1966).
[CrossRef]

Goody, R. M.

J. F. Noxon, R. M. Goody, “Observtion of Day Airglow Emission,” J. Atmos. Sci. 19, 342 (1962).
[CrossRef]

Hoey, M. J.

A. H. Jarrett, M. J. Hoey, “A Ground-level Photographic Observation of the Day Airglow Emission of Atomic Oxygen at 6300 Å,” Planet. Space Sci. 11, 1251 (1963).
[CrossRef]

Jarrett, A. H.

A. H. Jarrett, M. J. Hoey, “A Ground-level Photographic Observation of the Day Airglow Emission of Atomic Oxygen at 6300 Å,” Planet. Space Sci. 11, 1251 (1963).
[CrossRef]

Johanson, A. E.

J. F. Noxon, A. E. Johanson, “Changes in Thermospheric Molecular Oxygen Abundance inferred from Twilight 6300 Å Airglow,” Planet. Space Sci. 20, 2125 (1972).
[CrossRef]

Louise, R.

G. Courtes, R. Louise, G. Monnet, “Sur une Methode de Determination des Temperatures Electroniques des Regions—II”, Ann. Astrophys. 31, 493 (1968).

Monnet, G.

G. Courtes, R. Louise, G. Monnet, “Sur une Methode de Determination des Temperatures Electroniques des Regions—II”, Ann. Astrophys. 31, 493 (1968).

Noxon, J. F.

J. F. Noxon, A. E. Johanson, “Changes in Thermospheric Molecular Oxygen Abundance inferred from Twilight 6300 Å Airglow,” Planet. Space Sci. 20, 2125 (1972).
[CrossRef]

J. F. Noxon, R. M. Goody, “Observtion of Day Airglow Emission,” J. Atmos. Sci. 19, 342 (1962).
[CrossRef]

Raghavarao, R.

Shepherd, G. G.

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Widths—III,” Planet. Space Sci. 13, 551 (1965).
[CrossRef]

Ann. Astrophys. (1)

G. Courtes, R. Louise, G. Monnet, “Sur une Methode de Determination des Temperatures Electroniques des Regions—II”, Ann. Astrophys. 31, 493 (1968).

Appl. Opt. (1)

J. Atmos. Sci. (1)

J. F. Noxon, R. M. Goody, “Observtion of Day Airglow Emission,” J. Atmos. Sci. 19, 342 (1962).
[CrossRef]

J. Geophys. Res. (2)

J. E. Blamont, T. M. Donahue, “The Dayglow of the Sodium D lines,” J. Geophys. Res. 66, 1407 (1961).
[CrossRef]

M. Gadsden, T. M. Donahue, J. E. Blamont, “On the Measurement of Sodium Dayglow Emission by Means of a Zeeman Photometer,” J. Geophys. Res. 71, 5047 (1966).
[CrossRef]

Planet. Space Sci. (3)

A. R. Bens, L. L. Cogger, G. G. Shepherd, “Upper Atmospheric Temperatures from Doppler Line Widths—III,” Planet. Space Sci. 13, 551 (1965).
[CrossRef]

A. H. Jarrett, M. J. Hoey, “A Ground-level Photographic Observation of the Day Airglow Emission of Atomic Oxygen at 6300 Å,” Planet. Space Sci. 11, 1251 (1963).
[CrossRef]

J. F. Noxon, A. E. Johanson, “Changes in Thermospheric Molecular Oxygen Abundance inferred from Twilight 6300 Å Airglow,” Planet. Space Sci. 20, 2125 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the new dayglow photometer including the various electronic blocks.

Fig. 2
Fig. 2

Dual masks: (a) rotar and (b) stator that constitute the chopper assembly.

Fig. 3
Fig. 3

Typical tuning curve of the photometer for a neon 630.4-nm line. The sudden level change between the minima and maxima is due to the foldback in the electronic circuitry.

Fig. 4
Fig. 4

Neon 630.4-nm scan (1) with and (2) without the superposition of reflected diffuse sunlight. Hardly any change in the tuning characteristics is noticed.

Fig. 5
Fig. 5

Typical scan on OI 630.0-nm dayglow line in actual operating conditions.

Fig. 6
Fig. 6

Dayglow OI 630.0-nm intensity variation when clouds drift into the field of view. The increase in the background intensities due to the clouds and the corresponding decrease in the dayglow intensities are depicted.

Fig. 7
Fig. 7

Dayglow 630.0-nm scan during the presence of a severe dust storm.

Fig. 8
Fig. 8

(a),(b) Typical evening and morning twilight variation in dayglow 630.0-nm intensity along with the scattered background (skylight) appropriately scaled down over Ahmedabad, India during Jan. 1988.

Fig. 9
Fig. 9

Typical daytime variation in dayglow intensities over Ahmedabad. The curves are smoothed and redrawn with the background intensities scaled down appropriately. The double humped structure one at ~0700 IST (0630 LT) and another around 1730 IST (1700 LT) is a regular feature.

Fig. 10
Fig. 10

Proposed schematic layout for the application of the new technique for astronomical investigations wherein the difficulty of irregular brightness variations in the sources is often encountered.

Metrics