Abstract

A multiple scattering radiative transfer model has been developed to carry out a line by line calculation of the absorption and emission limb measurements that will be made by the High Resolution Doppler Imager to be flown on the Upper Atmosphere Research Satellite. The multiple scattering model uses the doubling and adding methods to solve the radiative transfer equation, modified to take into account a spherical inhomogeneous atmosphere. Representative absorption and emission line shapes in the O2(g+3g) atmospheric bands (A, B, and γ) and their variation with altitude are presented. The effects of solar zenith angle, aerosol loading, surface albedo, and cloud height on the line shapes are also discussed.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Winds from Space. 1: Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136–1141 (1982).
    [CrossRef] [PubMed]
  2. L. Wallace, D. M. Hunten, “Dayglow of the Oxygen A Band,” J. Geophys. Res. 73, 4813–4834 (1968).
    [CrossRef]
  3. A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
    [CrossRef]
  4. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” Environmental Research Papers 846, AFGL-TR-83-0187 (Aug.1983).
  5. P. M. Banks, G. Kockarts, Aeronomy, Parts A and B (Academic, New York, 1973).
  6. A. E. Hedin, “A Revised Global Thermospheric Model Based on Mass Spectrometer and Incoherent Scatter Data MSIS: 1983,” J. Geophys. Res. 88, 10,170–10,188 (1983).
    [CrossRef]
  7. L. S. Rothman et al., “The hitran Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  8. S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
    [CrossRef]
  9. E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles (Wiley, New York, 1976).
  10. R. E. Bird, “A. Beer’s Law Based Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance,” SERI/TR-215-1781 (1982).
  11. K. F. Palmer, D. Williams, “Optical Constants of Sulfuric Acid; Application to the Clouds of Venus,” Appl. Opt. 14, 208–219 (1975).
    [PubMed]
  12. H. C. van de Hulst, “A New Look at Multiple Scattering,” Technical Report, Goddard Institute for Space Studies, NASA, New York (1963).
  13. A. A. Lacis, J. E. Hansen, “A Parametrization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Atmos. Sci. 31, 118–133 (1974).
    [CrossRef]

1987 (1)

1986 (1)

A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
[CrossRef]

1983 (1)

A. E. Hedin, “A Revised Global Thermospheric Model Based on Mass Spectrometer and Incoherent Scatter Data MSIS: 1983,” J. Geophys. Res. 88, 10,170–10,188 (1983).
[CrossRef]

1982 (1)

1976 (1)

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

1975 (1)

1974 (1)

A. A. Lacis, J. E. Hansen, “A Parametrization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Atmos. Sci. 31, 118–133 (1974).
[CrossRef]

1968 (1)

L. Wallace, D. M. Hunten, “Dayglow of the Oxygen A Band,” J. Geophys. Res. 73, 4813–4834 (1968).
[CrossRef]

Abreu, V. J.

A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
[CrossRef]

Banks, P. M.

P. M. Banks, G. Kockarts, Aeronomy, Parts A and B (Academic, New York, 1973).

Bird, R. E.

R. E. Bird, “A. Beer’s Law Based Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance,” SERI/TR-215-1781 (1982).

Bucholtz, A.

A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
[CrossRef]

Drayson, S. R.

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

Hansen, J. E.

A. A. Lacis, J. E. Hansen, “A Parametrization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Atmos. Sci. 31, 118–133 (1974).
[CrossRef]

Hays, P. B.

A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
[CrossRef]

P. B. Hays, “High-Resolution Optical Measurements of Atmospheric Winds from Space. 1: Lower Atmosphere Molecular Absorption,” Appl. Opt. 21, 1136–1141 (1982).
[CrossRef] [PubMed]

Hedin, A. E.

A. E. Hedin, “A Revised Global Thermospheric Model Based on Mass Spectrometer and Incoherent Scatter Data MSIS: 1983,” J. Geophys. Res. 88, 10,170–10,188 (1983).
[CrossRef]

Hunten, D. M.

L. Wallace, D. M. Hunten, “Dayglow of the Oxygen A Band,” J. Geophys. Res. 73, 4813–4834 (1968).
[CrossRef]

Kneizys, F. X.

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” Environmental Research Papers 846, AFGL-TR-83-0187 (Aug.1983).

Kockarts, G.

P. M. Banks, G. Kockarts, Aeronomy, Parts A and B (Academic, New York, 1973).

Lacis, A. A.

A. A. Lacis, J. E. Hansen, “A Parametrization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Atmos. Sci. 31, 118–133 (1974).
[CrossRef]

McCartney, E. J.

E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles (Wiley, New York, 1976).

Palmer, K. F.

Rothman, L. S.

Skinner, W. R.

A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
[CrossRef]

van de Hulst, H. C.

H. C. van de Hulst, “A New Look at Multiple Scattering,” Technical Report, Goddard Institute for Space Studies, NASA, New York (1963).

Wallace, L.

L. Wallace, D. M. Hunten, “Dayglow of the Oxygen A Band,” J. Geophys. Res. 73, 4813–4834 (1968).
[CrossRef]

Williams, D.

Appl. Opt. (3)

J. Atmos. Sci. (1)

A. A. Lacis, J. E. Hansen, “A Parametrization for the Absorption of Solar Radiation in the Earth’s Atmosphere,” J. Atmos. Sci. 31, 118–133 (1974).
[CrossRef]

J. Geophys. Res. (2)

L. Wallace, D. M. Hunten, “Dayglow of the Oxygen A Band,” J. Geophys. Res. 73, 4813–4834 (1968).
[CrossRef]

A. E. Hedin, “A Revised Global Thermospheric Model Based on Mass Spectrometer and Incoherent Scatter Data MSIS: 1983,” J. Geophys. Res. 88, 10,170–10,188 (1983).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976).
[CrossRef]

Planet. Space Sci. (1)

A. Bucholtz, W. R. Skinner, V. J. Abreu, P. B. Hays, “The Dayglow of the O2 Atmospheric Band System,” Planet. Space Sci. 34, 1031–1035 (1986).
[CrossRef]

Other (5)

F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” Environmental Research Papers 846, AFGL-TR-83-0187 (Aug.1983).

P. M. Banks, G. Kockarts, Aeronomy, Parts A and B (Academic, New York, 1973).

E. J. McCartney, Optics of the Atmosphere, Scattering by Molecules and Particles (Wiley, New York, 1976).

R. E. Bird, “A. Beer’s Law Based Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance,” SERI/TR-215-1781 (1982).

H. C. van de Hulst, “A New Look at Multiple Scattering,” Technical Report, Goddard Institute for Space Studies, NASA, New York (1963).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Normalized tropospheric and stratospheric aerosol phase functions.

Fig. 2
Fig. 2

Terms used in the adding method. The diffuse reflection coefficient R and diffuse transmission coefficient T for two layers in the atmosphere with optical thicknesses τa and τb are shown. U and D are the diffuse coefficients for radiation going upward and downward, respectively, between the two layers.

Fig. 3
Fig. 3

Comparison of the geometry between a plane parallel (a) and spherical (b) atmosphere. Each is divided into five layers for illustrative purposes. The satellite is at point S and looks along path SS′. θ0 is the zenith angle of the incoming solar radiation, and θ is the zenith angle of the outgoing radiation along the line of sight. In (b) the tangent point of the line of sight is at point H, while TT′ represents the path of the line of sight through the tangent layer.

Fig. 4
Fig. 4

Simulated absorption line spectra near the B band head.

Fig. 5
Fig. 5

Extinction coefficients due to absorption, aerosol, and Rayleigh scattering vs altitude at the wing of a B band line.

Fig. 6
Fig. 6

Simulated (a) A band line, (b) B band line, and (c) γ band line showing the variation of line shape with increasing tangent height.

Fig. 7
Fig. 7

Variation of a simulated B band absorption line shape with tangent height.

Fig. 8
Fig. 8

Variation of a simulated A band emission line shape with tangent height.

Fig. 9
Fig. 9

Asymptotic intensity vs tangent height for an A, B, and γ band line (same lines as in Fig. 6).

Fig. 10
Fig. 10

Variation of line center and asymptotic intensity with solar zenith angle for an A and B band line where——, solar zenith angle = 0; - - - - - -, solar zenith angle = 40; — — — —, solar zenith angle = 60; and — - — - — -, solar zenith angle = 77. The above graphs were calculated with an albedo = 0 and the aerosol model = stratospheric background.

Fig. 11
Fig. 11

Variation of line center and asymptotic intensity with aerosol model for an A and γ band line where——, stratospheric background and - - - - -, aged volcanic type/high volcanic profile and the solar zenith angle = 0. The above graphs were calculated with an albedo = 0.

Fig. 12
Fig. 12

Variation of line center and asymptotic intensity with albedo for a γ band line at 0 and 77° solar zenith angle where—— albedo = 0.0, - - - - - albedo = 0.8. The wavenumber, ν0 = 15,870.5690 cm−1, and the aerosol model = stratospheric background.

Fig. 13
Fig. 13

Variation of a γ band absorption line shape with and without cloud layers at different altitudes for 0 and 77° solar zenith angle where —— surface: albedo = 0.2; - - - - - cloud at 5 km; — — — — cloud at 10 km; and — - — - — - cloud at 15 km. The wavenumber ν0 = 15,870.5690 cm−1 and the tangent height = 20 km.

Tables (2)

Tables Icon

Table I Atmospheric and Aerosol Model Conditions Used in the Line Shape Simulations

Tables Icon

Table II Line Parameters of the O2 Lines Used in the Simulations

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = a r α exp ( b r γ ) .
I r ( μ , μ 0 , ϕ ϕ 0 ) = μ 0 R ( μ , μ 0 , ϕ ϕ 0 ) π F ,
I t ( μ , μ 0 , ϕ ϕ 0 ) = μ 0 T ( μ , μ 0 , ϕ ϕ 0 ) π F ,
Q 1 = R a * R b ,
Q n = Q 1 Q n 1 ,
S = Σ Q n
D = T a + S A a + S T a ,
U = R b A a + R b D ,
R a + b = R A + A a U + T a * U ,
T a + b = A b D + T b A a + T b D .
R b D ( μ , μ 0 , ϕ ϕ 0 ) = 1 π 0 2 π 0 1 [ R b ( μ , μ , ϕ ϕ ) D ( μ , μ 0 , ϕ ϕ 0 ) ] μ d μ d ϕ .
A a = exp ( β a s ) ,
U = R b A a + R b D + B t D .
B t = exp ( β t s ) .

Metrics