Abstract

The results of a feasibility study conducted to determine the possibility of passively measuring the vertical profile of carbon monoxide in the troposphere on a global basis are presented. The instrument considered is a nadir-viewing gas correlation filter radiometer (GCFR). The basic instrument concept and radiative transfer equations are presented. The calculated signal functions, signal levels, sensitivity, and system noise levels of a spaceborne GCFR instrument are presented and discussed. It is concluded that a three- or four-level measurement of the atmospheric carbon monoxide mixing ratio in the troposphere is possible with this type of instrument.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Ludwig, M. Griggs, W. Malkmus, E. R. Bartle, “Measurement of Air Pollutants from Satellites. 1. Feasibility Considerations,” Appl. Opt. 13, 1494–1509 (1974).
    [CrossRef] [PubMed]
  2. H. G. Reichle et al., “Middle and Upper Tropospheric Carbon Monoxide Mixing Ratios as Measured by a Satellite-Borne Remote Sensor During 1981,” J. Geophys. Res. 91, 10,865–10,887 (1986).
    [CrossRef]
  3. OIES Report3, “Global Tropospheric Chemistry Plans for the U.S. ResearchEffort,” Office for Interdisciplinary Earth Studies (OIES), Boulder CO (1986).
  4. W. Seiler, “The Cycle of Atmospheric CO,” Tellus 26, 116–135 (1974).
    [CrossRef]
  5. V. I. Dianov-Klokov, L. N. Yurganov, “A Spectroscopic Study of the Global Space-Time Distribution of Atmospheric CO,” Tellus 33, 262–273 (1981).
    [CrossRef]
  6. M. A. K. Khalil, R. A. Rasmussen, “Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend,” Science 224, 54–56 (1984).
    [CrossRef] [PubMed]
  7. W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
    [CrossRef]
  8. P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
    [CrossRef]
  9. J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
    [CrossRef]
  10. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]

1987

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

1986

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

H. G. Reichle et al., “Middle and Upper Tropospheric Carbon Monoxide Mixing Ratios as Measured by a Satellite-Borne Remote Sensor During 1981,” J. Geophys. Res. 91, 10,865–10,887 (1986).
[CrossRef]

1984

M. A. K. Khalil, R. A. Rasmussen, “Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend,” Science 224, 54–56 (1984).
[CrossRef] [PubMed]

W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
[CrossRef]

1981

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[CrossRef]

V. I. Dianov-Klokov, L. N. Yurganov, “A Spectroscopic Study of the Global Space-Time Distribution of Atmospheric CO,” Tellus 33, 262–273 (1981).
[CrossRef]

1974

Bartle, E. R.

Brunke, E.

W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
[CrossRef]

Crawford, A. J.

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

Dianov-Klokov, V. I.

V. I. Dianov-Klokov, L. N. Yurganov, “A Spectroscopic Study of the Global Space-Time Distribution of Atmospheric CO,” Tellus 33, 262–273 (1981).
[CrossRef]

Fraser, P. J.

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

Giehl, H.

W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
[CrossRef]

Griggs, M.

Holliday, E.

W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
[CrossRef]

Hyson, P.

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

Khalil, M. A. K.

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

M. A. K. Khalil, R. A. Rasmussen, “Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend,” Science 224, 54–56 (1984).
[CrossRef] [PubMed]

Logan, J. A.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[CrossRef]

Ludwig, C. B.

Malkmus, W.

McElroy, M. B.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[CrossRef]

Prather, M. J.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[CrossRef]

Rasmussen, R. A.

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

M. A. K. Khalil, R. A. Rasmussen, “Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend,” Science 224, 54–56 (1984).
[CrossRef] [PubMed]

Reichle, H. G.

H. G. Reichle et al., “Middle and Upper Tropospheric Carbon Monoxide Mixing Ratios as Measured by a Satellite-Borne Remote Sensor During 1981,” J. Geophys. Res. 91, 10,865–10,887 (1986).
[CrossRef]

Rothman, L. S.

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Seiler, W.

W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
[CrossRef]

W. Seiler, “The Cycle of Atmospheric CO,” Tellus 26, 116–135 (1974).
[CrossRef]

Wofsy, S. C.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[CrossRef]

Yurganov, L. N.

V. I. Dianov-Klokov, L. N. Yurganov, “A Spectroscopic Study of the Global Space-Time Distribution of Atmospheric CO,” Tellus 33, 262–273 (1981).
[CrossRef]

Appl Opt.

L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

Appl. Opt.

J. Atmos. Chem.

P. J. Fraser, P. Hyson, R. A. Rasmussen, A. J. Crawford, M. A. K. Khalil, “Methane, Carbon Monoxide, and Methylchloroform inthe Southern Hemisphere,” J. Atmos. Chem. 4, 3–33 (1986).
[CrossRef]

J. Geophys. Res.

J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210–7254 (1981).
[CrossRef]

H. G. Reichle et al., “Middle and Upper Tropospheric Carbon Monoxide Mixing Ratios as Measured by a Satellite-Borne Remote Sensor During 1981,” J. Geophys. Res. 91, 10,865–10,887 (1986).
[CrossRef]

Science

M. A. K. Khalil, R. A. Rasmussen, “Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend,” Science 224, 54–56 (1984).
[CrossRef] [PubMed]

Tellus

W. Seiler, H. Giehl, E. Brunke, E. Holliday, “The Seasonality of CO Abundance in the Southern Hemisphere,” Tellus 36B, 219–231 (1984).
[CrossRef]

W. Seiler, “The Cycle of Atmospheric CO,” Tellus 26, 116–135 (1974).
[CrossRef]

V. I. Dianov-Klokov, L. N. Yurganov, “A Spectroscopic Study of the Global Space-Time Distribution of Atmospheric CO,” Tellus 33, 262–273 (1981).
[CrossRef]

Other

OIES Report3, “Global Tropospheric Chemistry Plans for the U.S. ResearchEffort,” Office for Interdisciplinary Earth Studies (OIES), Boulder CO (1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the instrument.

Fig. 2
Fig. 2

Normalized signal functions for 82.5-ppbv CO.

Fig. 3
Fig. 3

Signal levels vs CO mixing ratio for the 4.6-μm channels.

Fig. 4
Fig. 4

Sensitivity vs CO mixing ratio for the 4.6-μm channels.

Fig. 5
Fig. 5

Normalized signal functions for the 2.3-μm channel with and without CH4 interference.

Fig. 6
Fig. 6

Signal levels vs CO mixing ratio with and without CH4 interference.

Fig. 7
Fig. 7

Sensitivity vs CO mixing ratio with and without CH4 interference.

Fig. 8
Fig. 8

Signal change for +2% change in CO and −10% change in CH4.

Fig. 9
Fig. 9

Signal level vs solar zenith angle for reflectivities of 0.12 and 0.02 and atmospheric CO of 82.5 ppbv.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

Δ L = Δ ν L T ( ν ) [ τ ( ν ) υ τ ( ν ) g ] F d ν ,
L = Δ ν L T τ ( ν ) υ F d ν ,
L T ( ν ) = ( ν ) L 0 ( ν , T s ) τ ( ν , h ) + 0 h L 0 [ ν , T ( z ) ] d τ ( ν , z ) d z d z + 1 π [ 1 ( ν ) ] cos θ H s ( ν ) × [ τ ( ν , h ) ] [ τ ( ν , h ) ] f ( θ ) ,
τ m , n = exp [ m n a ( x ) d x ] ,
d τ m , n d m = a ( m ) τ m , n τ m , n = 1 m n τ y , n y d y .
G = s ( ν ) L 0 ( ν , T s ) ,
ψ = 1 π [ 1 s ( ν ) ] cos θ H s [ τ ( ν , h ) ] f ( θ ) ,
Δ L = Δ ν [ G + ψ + 0 h a ( x ) τ x , h ( G + ψ L A ) d z ] ( τ g τ υ ) F d ν .
Δ L = Δ ν ( G + ψ ) ( τ g τ υ ) F d ν + Δ ν P s 0 a ( p ) τ p , 0 ( G L A ) ( τ g τ υ ) F d ν R T ( p ) m g d ( ln p ) + Δ ν P s 0 a ( x ) τ p , 0 ψ ( τ g τ υ ) F d ν R T ( p ) m g d ( ln p ) ,
Δ L 4 . 6 = Δ ν G ( τ g τ υ ) F d ν + P s 0 Δ ν a ( p ) τ p , 0 ( G L A ) × ( τ g τ υ ) F d ν R T ( p ) m g d ( ln p ) .
Δ L 2 . 3 = Δ ν ψ ( τ g τ υ ) F d ν + Δ ν P s 0 a ( p ) τ p , 0 ψ ( τ g τ υ ) F d ν R T ( p ) m g d ( ln p ) .
0 = Δ ν R 1 ( τ g τ υ ) F d ν Δ ν R 2 ( τ g τ υ ) F d ν
0 = Δ ν R 3 ( τ g τ υ ) F d ν Δ ν R 4 ( τ g τ υ ) F d ν
O Δ ν G ( τ g τ υ ) F d ν ,
O Δ ν ψ ( τ g τ υ ) F d ν ,
Δ L 4 . 6 = P s 0 Δ ν a ( p ) τ p , 0 ( G L A ) × ( τ g τ υ ) F d ν R T ( p ) m g d ( ln p ) ,
Δ L 2 . 3 = P s 0 Δ ν a ( p ) τ p , 0 ψ ( τ g τ υ ) F d ν R T ( p ) m g d ( ln p ) .
Δ L = P s 0 S F d ( ln p ) .
S F 4 , 6 = Δ ν a ( p ) τ p , 0 ( G L A ) ( τ g τ υ ) R T ( p ) m g F d ν ,
S F 2 . 3 = Δ ν a ( p ) τ p , 0 ψ ( τ g τ υ ) R T ( p ) m g F d ν .
δ ( Δ L 4 . 6 ) / δ ( CO )

Metrics