## Abstract

A multichannel photoelectron counting system employing a Reticon 1024-element linear silicon photodiode array with fiber optic window has been developed. The primary design philosophy was to produce a 1-D electronic camera optimized for high dispersion astronomical spectrophotometry of faint sources by intensifying the photodiode array with a microchannel plate. With an intensification factor of ≃10^{8}, single photon incidences will be amplified beyond system noise, becoming readily discriminable by low resolution pulse counting electronics. The system will approach the ideal of a truly noiseless amplifier with shot-limited performance. Funds not being available for the purchase of a microchannel plate, operation of the system in the rapid scanning intensified mode was illustrated by using the photodiode array as a line scanner imaging bright sources, and operation in the slow chilled Reticon mode was illustrated by installation in an automated 3-m Czerny-Turner double monochromator.

© 1989 Optical Society of America

Full Article |

PDF Article
### Equations (19)

Equations on this page are rendered with MathJax. Learn more.

(1)
$${S}_{{A}_{i}}=\left({\text{RQE}}_{{R}_{i}}{N}_{{P}_{i}}+{N}_{{L}_{i}}\right)\Delta T{G}_{j}+{\text{FPS}}_{i},$$
(2)
$${S}_{{A}_{i}}=\left({\text{RQE}}_{{R}_{i}}{G}_{{\text{MCP}}_{i}}{\text{RQE}}_{{\text{MCP}}_{i}}{N}_{{P}_{i}}+{N}_{{L}_{i}}\right)\Delta T{G}_{j}+{\text{FPS}}_{i},$$
(3)
$${\text{RQE}}_{{R}_{i}}{G}_{{\text{MCP}}_{i}}{\text{RQE}}_{{\text{MCP}}_{i}}{N}_{{P}_{i}}\gg {N}_{{L}_{i}},$$
(4)
$${\text{RQE}}_{{R}_{i}}{G}_{{\text{MCP}}_{i}}{\text{RQE}}_{{\text{MCP}}_{i}}{N}_{{P}_{i}}\Delta T{G}_{j}\gg {\text{FPS}}_{i},$$
(5)
$${\mathrm{S}}_{A}={\text{RQE}}_{R}{G}_{\text{MCP}}{\text{RQE}}_{\text{MCP}}{N}_{P}G/\text{integration},$$
(6)
$${S}_{\mathrm{e}-\mathrm{h}}={\text{RQE}}_{R}{G}_{\text{MCP}}.$$
(7)
$${S}_{\mathrm{e}-\mathrm{h}}={\text{RQE}}_{R}{G}_{\text{MCP}}^{n}{\text{RQE}}_{\text{MCP}}^{\left(n-1\right)}.$$
(8)
$$\overline{{i}_{kn}^{2}}=2e{I}_{k}\Delta B,$$
(9)
$${I}_{a}={I}_{k}{\delta}^{n},$$
(10)
$$\overline{{i}_{\text{an}}^{2}}=2e{I}_{k}\Delta B{\delta}^{2n}.$$
(11)
$$\overline{{i}_{1}^{2}}=2e{I}_{k}\Delta B\delta .$$
(12)
$$\overline{{i}_{\text{an}}^{2}}=2e{I}_{k}\Delta B\left({\delta}^{2n}+\delta \right).$$
(13)
$$\theta \left(n,\delta \right)=\left({\delta}^{2n}+\delta \right)/{\delta}^{2n}.$$
(14)
$$\text{DQE}={\left(\mathrm{S}/\mathrm{N}\right)}_{o}^{2}/{\left(\mathrm{S}/\mathrm{N}\right)}_{i}^{2},$$
(15)
$${\text{DQE}}_{R}=\frac{{\text{RQE}}_{R}}{1+{\left[\left(2{\sigma}^{2}\right)/\left({\text{RQE}}_{R}{N}_{P}\Delta T\right)\right]}^{1/2}},$$
(16)
$${\text{DQE}}_{R}\simeq {\text{RQE}}_{R}=70\%\phantom{\rule{0.2em}{0ex}}\text{at}\phantom{\rule{0.2em}{0ex}}\lambda 7500\phantom{\rule{0.2em}{0ex}}\AA .$$
(17)
$${\text{DQE}}_{R}\simeq {10}^{-5}\%\phantom{\rule{0.2em}{0ex}}\text{at}\phantom{\rule{0.2em}{0ex}}\lambda 7500\phantom{\rule{0.2em}{0ex}}\AA .$$
(18)
$${\text{DQE}}_{\text{MCP}}={\text{RQE}}_{\text{MCP}}=25\%.$$
(19)
$$\frac{\lambda 5460.742\phantom{\rule{0.2em}{0ex}}\AA}{\lambda 5769.598\phantom{\rule{0.2em}{0ex}}\AA}=6.8;\frac{\lambda 5460.742\phantom{\rule{0.2em}{0ex}}\AA}{\lambda 5790.659\phantom{\rule{0.2em}{0ex}}\AA}=6.0;\frac{\lambda 5460.742\phantom{\rule{0.2em}{0ex}}\AA}{\lambda 4358.343\phantom{\rule{0.2em}{0ex}}\AA}=2.0.$$