Abstract

Many practical modulator materials include combinations of electrooptically induced birefringence, optical activity, and/or Faraday rotation. Thus, there is a need for a procedure to design and analyze devices fabricated with materials exhibiting any or all of these effects. In this paper a simple procedure employing an extension of the general Jacobi method is introduced for determining the properties of the two allowed elliptical eigenpolarizations for an arbitrary direction of propagation and for the principal indices and axes of a general lossless, electrooptic, and gyrotropic medium. The procedure uses an iterative application of unitary transformations to diagonalize the Hermitian impermeability tensor. A complex polarization variable is defined from elements of the unitary transformation matrix to determine the ellipticity, azimuth angle, relative amplitude and phase, and handedness of the two orthogonal elliptical polarizations. The phase velocity indices of refraction are readily calculated with simple derived expressions. The procedure is numerically stable and accurate for any crystal class, external field direction, and direction of propagation.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (52)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription