Abstract

Results of a rigorous leaky wave analysis of an optical grating coupler having a large grating period are presented. The coupler is designed so that most of the guided-wave power is transferred to a substrate beam progressing in the forward direction with the first-order air beam made evanescent. It is found that a large power partition into the substrate beam can readily be obtained in spite of the presence of a number of higher-order propagating space harmonics. Validity of the approximate perturbation method for the case of the long grating period is also examined.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Tamir, Ed., Integrated Optics (Springer-Verlag, Berlin, 1975), Chap. 3.
  2. G. Hatakoshi, H. Fujima, K. Goto, “Waveguide Grating Lenses for Optical Couplers,” Appl. Opt. 23, 1749 (1984).
    [CrossRef] [PubMed]
  3. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
    [CrossRef]
  4. T. Suhara, N. Nozaki, H. Nishihara, “An Integrated Acous-tooptic Printer Head,” in Proceedings, European Conferences on Integrated Optics (1987), pp. 119–122.
  5. J. H. Harris, R. K. Winn, D. G. Dalgoutte, “Theory and Design for Periodic Couplers,” Appl. Opt. 11, 2234 (1972).
    [CrossRef] [PubMed]
  6. R. Ulrich, “Efficiency of Optical-Grating Couplers,” J. Opt. Soc. Am. 63, 1419 (1973).
    [CrossRef]
  7. S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of Periodic Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123 (1975).
    [CrossRef]
  8. T. Tamir, S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. 14, 235 (1977).
    [CrossRef]

1986 (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

1984 (1)

1977 (1)

T. Tamir, S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. 14, 235 (1977).
[CrossRef]

1975 (1)

S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of Periodic Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123 (1975).
[CrossRef]

1973 (1)

1972 (1)

Bertoni, H. L.

S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of Periodic Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123 (1975).
[CrossRef]

Dalgoutte, D. G.

Fujima, H.

Goto, K.

Harris, J. H.

Hatakoshi, G.

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

Nishihara, H.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

T. Suhara, N. Nozaki, H. Nishihara, “An Integrated Acous-tooptic Printer Head,” in Proceedings, European Conferences on Integrated Optics (1987), pp. 119–122.

Nozaki, N.

T. Suhara, N. Nozaki, H. Nishihara, “An Integrated Acous-tooptic Printer Head,” in Proceedings, European Conferences on Integrated Optics (1987), pp. 119–122.

Peng, S. T.

T. Tamir, S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. 14, 235 (1977).
[CrossRef]

S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of Periodic Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123 (1975).
[CrossRef]

Suhara, T.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

T. Suhara, N. Nozaki, H. Nishihara, “An Integrated Acous-tooptic Printer Head,” in Proceedings, European Conferences on Integrated Optics (1987), pp. 119–122.

Tamir, T.

T. Tamir, S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. 14, 235 (1977).
[CrossRef]

S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of Periodic Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123 (1975).
[CrossRef]

Ulrich, R.

Ura, S.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

Winn, R. K.

Appl. Opt. (2)

Appl. Phys. (1)

T. Tamir, S. T. Peng, “Analysis and Design of Grating Couplers,” Appl. Phys. 14, 235 (1977).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. T. Peng, T. Tamir, H. L. Bertoni, “Theory of Periodic Dielectric Waveguides,” IEEE Trans. Microwave Theory Tech. MTT-23, 123 (1975).
[CrossRef]

IEEE/OSA J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An Integrated-Optic Disk Pickup Device,” IEEE/OSA J. Lightwave Technol. LT-4, 913 (1986).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (2)

T. Suhara, N. Nozaki, H. Nishihara, “An Integrated Acous-tooptic Printer Head,” in Proceedings, European Conferences on Integrated Optics (1987), pp. 119–122.

T. Tamir, Ed., Integrated Optics (Springer-Verlag, Berlin, 1975), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Side view of an optical grating coupler.

Fig. 2
Fig. 2

Variation of the leakage properties vs the grating period: (a) the normalized leakage constant and (b) the power partition ratio into the -1st-order substrate beam.

Fig. 3
Fig. 3

Fluctuations of the normalized leakage constant and the power partition ratio in the vicinity of d = 7π/β, where the seventh-order Bragg reflection occurs.

Fig. 4
Fig. 4

Dependence of (a) the leakage constant and (b) the power partition ratio on the grating thickness: solid lines are the rigorous results and dashed lines are the approximate results obtained by using the improved perturbation method.

Fig. 5
Fig. 5

Dependence of the leakage constant on the film thickness.

Fig. 6
Fig. 6

Grating thickness for which α = 0.5 mm−1 and the corresponding ηs vs the film thickness.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

d > 2 π β k 0 ,
E y ( i ) ( x , z ) = n f n ( i ) ( x ) exp ( j β n z ) , i = a , g , f , s , β n = β 0 + 2 n π / d , β 0 β j α .
η s = P 1 ( s ) P n ( a ) + P n ( s ) ,

Metrics