Abstract

A porous plastic optical fiber has been developed for use in chemical gas sensing. This porous plastic waveguide, which was made with copolymer materials, has an interconnective porous structure as well as uniformity of pore size. These sensors are based on in-line optical absorption within the porous plastic fiber core and have much greater sensitivities than sensors based on evanescent coupling to a surrounding medium. Furthermore, this fiber simultaneously exhibits very high gas permeability and liquid impermeability. This combination makes the fiber particularly suitable for gas concentration measurements in aqueous samples. An ammonia gas sensor has been tested to demonstrate the effectiveness of this porous plastic waveguide.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. R. Seitz, “Chemical Sensors Based On Fiber Optics,” Anal. Chem. 56, 16A–34A (1984).
  2. G. G. Vurek, “In-Vivo Optical Chemical Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 2–6 (1984).
  3. A. Katzir, “Biomedical Fiber Optic Sensors,” in Technical Digest, Vol. 2, Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), Part 1, pp. 4–6.
  4. T. D. Rhines, M. A. Arnold, “Simplex Optimization of a Fiber Optic Ammonia Sensor Based on Multiple Indicators,” Anal. Chem. 60, 76–81 (1988).
    [CrossRef] [PubMed]
  5. C. Munkholm, D. R. Walt, “A Fiber Optic Sensor for CO2 Measurement,” Talanta 35, 109–112 (1988).
    [CrossRef] [PubMed]
  6. C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).
  7. M. R. Shahriari, Q. Zhou, G. H. Sigel, “Porous Optical Fibers for High-Sensitivity Ammonia Vapor Sensors,” Opt. Lett. 13, 407–409 (1988).
    [CrossRef] [PubMed]
  8. Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
    [CrossRef]
  9. J. F. Giuliani, H. Wohltjen, N. L. Jarvis, “Reversible Optical Waveguide Sensor for Ammonia Vapors,” Opt. Lett. 8, 54–56 (1983).
    [CrossRef] [PubMed]

1988 (4)

T. D. Rhines, M. A. Arnold, “Simplex Optimization of a Fiber Optic Ammonia Sensor Based on Multiple Indicators,” Anal. Chem. 60, 76–81 (1988).
[CrossRef] [PubMed]

C. Munkholm, D. R. Walt, “A Fiber Optic Sensor for CO2 Measurement,” Talanta 35, 109–112 (1988).
[CrossRef] [PubMed]

Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

M. R. Shahriari, Q. Zhou, G. H. Sigel, “Porous Optical Fibers for High-Sensitivity Ammonia Vapor Sensors,” Opt. Lett. 13, 407–409 (1988).
[CrossRef] [PubMed]

1986 (1)

C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).

1984 (2)

W. R. Seitz, “Chemical Sensors Based On Fiber Optics,” Anal. Chem. 56, 16A–34A (1984).

G. G. Vurek, “In-Vivo Optical Chemical Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 2–6 (1984).

1983 (1)

Arnold, M. A.

T. D. Rhines, M. A. Arnold, “Simplex Optimization of a Fiber Optic Ammonia Sensor Based on Multiple Indicators,” Anal. Chem. 60, 76–81 (1988).
[CrossRef] [PubMed]

Giuliani, J. F.

Jarvis, N. L.

Katzir, A.

A. Katzir, “Biomedical Fiber Optic Sensors,” in Technical Digest, Vol. 2, Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), Part 1, pp. 4–6.

Klainer, S. M.

C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).

Kritz, D.

Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Milanovich, F. P.

C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).

Munkholm, C.

C. Munkholm, D. R. Walt, “A Fiber Optic Sensor for CO2 Measurement,” Talanta 35, 109–112 (1988).
[CrossRef] [PubMed]

C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).

Rhines, T. D.

T. D. Rhines, M. A. Arnold, “Simplex Optimization of a Fiber Optic Ammonia Sensor Based on Multiple Indicators,” Anal. Chem. 60, 76–81 (1988).
[CrossRef] [PubMed]

Seitz, W. R.

W. R. Seitz, “Chemical Sensors Based On Fiber Optics,” Anal. Chem. 56, 16A–34A (1984).

Shahriari, M. R.

Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

M. R. Shahriari, Q. Zhou, G. H. Sigel, “Porous Optical Fibers for High-Sensitivity Ammonia Vapor Sensors,” Opt. Lett. 13, 407–409 (1988).
[CrossRef] [PubMed]

Sigel, G. H.

M. R. Shahriari, Q. Zhou, G. H. Sigel, “Porous Optical Fibers for High-Sensitivity Ammonia Vapor Sensors,” Opt. Lett. 13, 407–409 (1988).
[CrossRef] [PubMed]

Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Vurek, G. G.

G. G. Vurek, “In-Vivo Optical Chemical Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 2–6 (1984).

Walt, D. R.

C. Munkholm, D. R. Walt, “A Fiber Optic Sensor for CO2 Measurement,” Talanta 35, 109–112 (1988).
[CrossRef] [PubMed]

C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).

Wohltjen, H.

Zhou, Q.

Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

M. R. Shahriari, Q. Zhou, G. H. Sigel, “Porous Optical Fibers for High-Sensitivity Ammonia Vapor Sensors,” Opt. Lett. 13, 407–409 (1988).
[CrossRef] [PubMed]

Anal. Chem. (4)

W. R. Seitz, “Chemical Sensors Based On Fiber Optics,” Anal. Chem. 56, 16A–34A (1984).

T. D. Rhines, M. A. Arnold, “Simplex Optimization of a Fiber Optic Ammonia Sensor Based on Multiple Indicators,” Anal. Chem. 60, 76–81 (1988).
[CrossRef] [PubMed]

C. Munkholm, D. R. Walt, F. P. Milanovich, S. M. Klainer, “Polymer Modification of Fiber Optic Chemical Sensors as a Method of Enhancing Fluorescence Signal for pH Measurement,” Anal. Chem. 58, 1427–1430 (1986).

Q. Zhou, M. R. Shahriari, D. Kritz, G. H. Sigel, “Porous Fiber Optic Sensor for High Sensitivity Humidity Measurements,” Anal. Chem. 60, 2317–2320 (1988).
[CrossRef]

Opt. Lett. (2)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

G. G. Vurek, “In-Vivo Optical Chemical Sensors,” Proc. Soc. Photo-Opt. Instrum. Eng. 494, 2–6 (1984).

Talanta (1)

C. Munkholm, D. R. Walt, “A Fiber Optic Sensor for CO2 Measurement,” Talanta 35, 109–112 (1988).
[CrossRef] [PubMed]

Other (1)

A. Katzir, “Biomedical Fiber Optic Sensors,” in Technical Digest, Vol. 2, Optical Fiber Sensors (Optical Society of America, Washington, DC, 1988), Part 1, pp. 4–6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Figure 1
Figure 1

Configuration of porous plastic waveguide sensor probe.

Figure 2
Figure 2

Schematic diagram of the experimental arrangement of the ammonia sensor.

Figure 3
Figure 3

Absorption spectra of Bromocresol Purple entrapped in a polymer matrix A before exposure to ammonia, and B after exposure to ammonia.

Figure 4
Figure 4

Calibration curve of the porous plastic waveguide sensor in an ammonia gas mixture stream.

Figure 5
Figure 5

Calibration curves for ammonia concentration measurements in aqueous solution.

Metrics