Abstract

The current sensitivity and bandwidth of the optical fiber current monitor are analyzed. The optimal sensitivity is proportional to the ratio of fiber attenuation to the Verdet constant at a specific fiber length. A selection of compound glasses has been investigated with a view to improving bandwidth and sensitivity over standard silica–fiber systems. A trial fiber of the most promising glass (Schott F7) has been fabricated and characterized.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Smith, “Polarization and Magnetooptic Properties of Single-Mode Optical Fiber,” Appl. Opt. 17, 52–56 (1978).
    [CrossRef] [PubMed]
  2. A. Papp, H. Harms, “Magnetooptical Current Transformer. 1: Principles,” Appl. Opt. 19, 3729–3734 (1980).
    [CrossRef] [PubMed]
  3. Schott Optical Glass Handbook (Jena Glaswerk Schott & Gen., Mainz, F.R.G., 1971).
  4. J. L. Hullett, T. V. Muoi, “A Feedback Receiver Amplifier for Optical Transmission Systems,” IEEE Trans. Commun. 24, 1180–1185 (1976).
    [CrossRef]
  5. C. C. Robinson, “The Faraday Rotation of Diamagnetic Glasses from 0.334 μ to 1.9 μ,” Appl. Opt. 3, 1163–1166 (1964).
    [CrossRef]
  6. D. N. Payne, W. A. Gambling, “The Preparation of Multi-mode Glass and Liquid-Core Optical Fibres,” Optoelectronics 5, 297–307 (1973).
  7. A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, “Birefringence and Polarization Mode-Dispersion in Spun Single-Mode Fibers,” Appl. Opt. 20, 2962–2968 (1981).
    [CrossRef] [PubMed]
  8. N. F. Borelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41, 3289–3293 (1964).
    [CrossRef]

1981 (1)

1980 (1)

1978 (1)

1976 (1)

J. L. Hullett, T. V. Muoi, “A Feedback Receiver Amplifier for Optical Transmission Systems,” IEEE Trans. Commun. 24, 1180–1185 (1976).
[CrossRef]

1973 (1)

D. N. Payne, W. A. Gambling, “The Preparation of Multi-mode Glass and Liquid-Core Optical Fibres,” Optoelectronics 5, 297–307 (1973).

1964 (2)

Barlow, A. J.

Borelli, N. F.

N. F. Borelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

Gambling, W. A.

D. N. Payne, W. A. Gambling, “The Preparation of Multi-mode Glass and Liquid-Core Optical Fibres,” Optoelectronics 5, 297–307 (1973).

Harms, H.

Hullett, J. L.

J. L. Hullett, T. V. Muoi, “A Feedback Receiver Amplifier for Optical Transmission Systems,” IEEE Trans. Commun. 24, 1180–1185 (1976).
[CrossRef]

Muoi, T. V.

J. L. Hullett, T. V. Muoi, “A Feedback Receiver Amplifier for Optical Transmission Systems,” IEEE Trans. Commun. 24, 1180–1185 (1976).
[CrossRef]

Papp, A.

Payne, D. N.

A. J. Barlow, J. J. Ramskov-Hansen, D. N. Payne, “Birefringence and Polarization Mode-Dispersion in Spun Single-Mode Fibers,” Appl. Opt. 20, 2962–2968 (1981).
[CrossRef] [PubMed]

D. N. Payne, W. A. Gambling, “The Preparation of Multi-mode Glass and Liquid-Core Optical Fibres,” Optoelectronics 5, 297–307 (1973).

Ramskov-Hansen, J. J.

Robinson, C. C.

Smith, A. M.

Appl. Opt. (4)

IEEE Trans. Commun. (1)

J. L. Hullett, T. V. Muoi, “A Feedback Receiver Amplifier for Optical Transmission Systems,” IEEE Trans. Commun. 24, 1180–1185 (1976).
[CrossRef]

J. Chem. Phys. (1)

N. F. Borelli, “Faraday Rotation in Glasses,” J. Chem. Phys. 41, 3289–3293 (1964).
[CrossRef]

Optoelectronics (1)

D. N. Payne, W. A. Gambling, “The Preparation of Multi-mode Glass and Liquid-Core Optical Fibres,” Optoelectronics 5, 297–307 (1973).

Other (1)

Schott Optical Glass Handbook (Jena Glaswerk Schott & Gen., Mainz, F.R.G., 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Noise equivalent current Ie (normalized to coil diameter d) vs fiber length.

Fig. 2
Fig. 2

Experimental configuration for measurement of Verdet constant.

Tables (2)

Tables Icon

Table I Verdet Constant, Attenuation and Refractive Index Values for a Selection of Glasses at a Wavelength of 633 nm

Tables Icon

Table II Characteristics of the Fibers Measured

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R ( I ) = sin ( 2 V N I ) 2 V N I = 2 V L I π d ,
R ( n ) = ( 2 | e | B R e P r ) 1 / 2
I e d = π 2 V L ( 2 | e | B R e P 1 10 α L 10 4 ) 1 / 2 .
L max = 2 × 10 4 α log e 10 .
I e d | L max = ( α V ) π log e 10 4 × 10 4 ( 2 | e | B R e P 1 10 2 / log e 10 ) 1 / 2 .
θ ( ω ) = t t 1 t k a sin ω t d t ,
θ ( ω ) = 2 k a sin ω ( t n L 2 c ) 1 ω sin ( ω n L 2 c ) .
f 0 = 1 . 391 c π n L .

Metrics