Abstract

Simple transfer optics are used, employing a spherical rather than cylindrical lens, to complete the power transfer resulting in a small power loss for a wide range of astigmatism.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen, “Astigmatism in Laser Beam Optical Systems,” Appl. Opt. 26, 2908–2911 (1986).
    [CrossRef]
  2. M. R. Sayeh, H. R. Bilger, T. Habib, “Optical Resonator with an External Source: Excitation of the Hermite-Gaussian Modes,” Appl. Opt. 24, 3756–3761 (1985).
    [CrossRef] [PubMed]
  3. A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), Chap. 20.

1986 (1)

J. Turunen, “Astigmatism in Laser Beam Optical Systems,” Appl. Opt. 26, 2908–2911 (1986).
[CrossRef]

1985 (1)

Appl. Opt. (2)

Other (1)

A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986), Chap. 20.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Transfer optics for an astigmatic (elliptical) Gaussian beam with widths w bx and w by to a stigmatic (circular) Gaussian system of width w.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

m x = [ ( w x 2 w 2 ) / ( w x 2 + w 2 ) ] 1 / 2 , m y = [ ( w y 2 w 2 ) / ( w y 2 + w 2 ) ] 1 / 2
η = ( P / P 0 ) = [ ( 1 m x 4 ) ( 1 m y 4 ) ] 1 / 2 ,
| m x | = | m y | = m 0 ,
η o p t = 1 m 4 = 4 a / ( a + 1 ) 2 = 4 ( 1 / a ) [ ( 1 / a ) + 1 ] 2 ,
w x = w / a , w y = w a .
x = ( π / λ ) ( w / a ) ( a w b x 2 w 2 ) 1 / 2 , f = ( π / λ ) w b x 2 w / ( a w b x 2 w 2 ) 1 / 2 = ( π w b x w / λ 2 ) / ( a x ) ,

Metrics