Abstract

Operating conditions for using a LCTV in the bipolar phase mode are discussed showing that optimum performance is obtained when the interpixel transmitted light contribution is effectively reduced to zero.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. S. Yu, S. Jutamalia, D. A. Gregory, “Optical Parallel Logic Gates Using Inexpensive Liquid Crystal Televisions,” Opt. Lett. 12, 1050 (1987).
    [CrossRef] [PubMed]
  2. J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).
  3. J. A. Davis, G. M. Heissenberger, R. A. Lilly, D. M. Cottrell, M. F. Brownell, “High Efficiency Optical Reconstruction of Binary Phase—Only Filters Using the Hughes Liquid Crystal Light Valve,” Appl. Opt. 26, 929–933 (1987).
    [CrossRef] [PubMed]
  4. J. G. Duthie, K. B. Farr, “Phase and Amplitude Effects in Two Dimensional Spatial Light Modulators,” in Proceedings, Thirteenth ICO Conference, Sapporo, Japan (1984), pp. 164–165.
  5. B. Bates, P. C. Miller, “Liquid Crystal Television in Speckle Metrology,” Appl. Opt. 27, 2816–2817 (1988).
    [CrossRef] [PubMed]
  6. B. Bates, P. C. Miller, L-C Wang, “Liquid Crystal Television Optical Gates Applied to Real-Time Speckle Metrology,” J. Mod. Opt. (in press).

1988 (1)

1987 (2)

1986 (1)

J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).

Bates, B.

B. Bates, P. C. Miller, “Liquid Crystal Television in Speckle Metrology,” Appl. Opt. 27, 2816–2817 (1988).
[CrossRef] [PubMed]

B. Bates, P. C. Miller, L-C Wang, “Liquid Crystal Television Optical Gates Applied to Real-Time Speckle Metrology,” J. Mod. Opt. (in press).

Brownell, M. F.

Cottrell, D. M.

Davis, J. A.

J. A. Davis, G. M. Heissenberger, R. A. Lilly, D. M. Cottrell, M. F. Brownell, “High Efficiency Optical Reconstruction of Binary Phase—Only Filters Using the Hughes Liquid Crystal Light Valve,” Appl. Opt. 26, 929–933 (1987).
[CrossRef] [PubMed]

J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).

Duthie, J. G.

J. G. Duthie, K. B. Farr, “Phase and Amplitude Effects in Two Dimensional Spatial Light Modulators,” in Proceedings, Thirteenth ICO Conference, Sapporo, Japan (1984), pp. 164–165.

Farr, K. B.

J. G. Duthie, K. B. Farr, “Phase and Amplitude Effects in Two Dimensional Spatial Light Modulators,” in Proceedings, Thirteenth ICO Conference, Sapporo, Japan (1984), pp. 164–165.

Gregory, D. A.

Heissenberger, G. M.

Jutamalia, S.

Krenz, K. D.

J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).

Lilley, R. A.

J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).

Lilly, R. A.

Liu, H-K.

J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).

Miller, P. C.

B. Bates, P. C. Miller, “Liquid Crystal Television in Speckle Metrology,” Appl. Opt. 27, 2816–2817 (1988).
[CrossRef] [PubMed]

B. Bates, P. C. Miller, L-C Wang, “Liquid Crystal Television Optical Gates Applied to Real-Time Speckle Metrology,” J. Mod. Opt. (in press).

Wang, L-C

B. Bates, P. C. Miller, L-C Wang, “Liquid Crystal Television Optical Gates Applied to Real-Time Speckle Metrology,” J. Mod. Opt. (in press).

Yu, F. T. S.

Appl. Opt. (2)

Opt. Lett. (1)

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

J. A. Davis, R. A. Lilley, K. D. Krenz, H-K. Liu, “Applicability of the Liquid Crystal Television for Optical Data Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 613, 245–254 (1986).

Other (2)

J. G. Duthie, K. B. Farr, “Phase and Amplitude Effects in Two Dimensional Spatial Light Modulators,” in Proceedings, Thirteenth ICO Conference, Sapporo, Japan (1984), pp. 164–165.

B. Bates, P. C. Miller, L-C Wang, “Liquid Crystal Television Optical Gates Applied to Real-Time Speckle Metrology,” J. Mod. Opt. (in press).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Rotation angle for the on/off states as a function of screen bias voltage for the Realistic model 16-7056.

Fig. 2
Fig. 2

Schematic diagram of the relevant polarization directions of the ON, OFF, and interpixel I light together with polarizer P and analyzer A orientations for different operating conditions. β is the rotation angle difference between on/off states, and ϕ is the angle between the analyzer and polarization direction of the interpixel light: (a) bias = 0.5 V, amplitude modulation β ~28°, ϕ ~64°; (b) bias = 0.5 V, bipolar modulation β ~28°, ϕ ~50°; (c) bias = 3.2 V, amplitude modulation β ~7°, ϕ ~85.5°; (d) bias = 3.2 V, bipolar modulation β~7°,ϕ ~89°.

Fig. 3
Fig. 3

Densitometer traces of photographically recorded grating diffraction patterns: (a) bias = 0.5 V, bipolar modulation (NB there is no significant difference between the intensity distributions for amplitude and bipolar modulation at this voltage); (b) bias = 3.2 V, bipolar modulation; (c) bias = 3.2 V, amplitude modulation. Intensity measurements made with an array detector show that the zero-order/first-order intensity ratio is reduced by a factor of ~4 at the optimum bias = 3.2 V.

Fig. 4
Fig. 4

Densitometer traces of diffraction patterns of double exposure binary speckle images displayed on the TV at the optimum bias voltage of 3.2 V; (a) bipolar and (b) amplitude modulation.

Metrics