Abstract

The parallelism and interconnectivity of optical systems may provide important advantages for these systems in massively parallel processing applications. Electronic systems, however, retain all the advantages of a highly developed technology that has been widely applied with excellent success. In both of these technologies, the methods of direct truth-table look-up processing are becoming increasingly important as the need grows for increased speed and throughput. A major issue in truth-table look-up processing is the number representation used for data. In this paper, the effects of number representation are investigated for the important case of 8-bit addition as a specific example. The inputs are two 8-bit binary numbers together with an input carry. The output is a full precision 9-bit binary sum. For the intermediate processing three number representations are treated: binary, residue, and modified signed-digit. The numbers in all three representations are in binary-coded form throughout the processing. The critically important steps of encoding the numbers into the residue and modified signed-digit systems and then decoding the results back into direct binary are also performed using truth-table look-up methods. For the direct binary representation, a total of 2545 gates (2519 holograms) are required. For the residue representation, a total of 1764 gates (1686 holograms) are required. For the modified signed-digit representation, a total of 4142 gates (4052 holograms) are required.

© 1989 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Analytic expressions for the sizes of logically minimized truth tables for binary addition and subtraction

Mir Mirsalehi and Thomas K. Gaylord
Appl. Opt. 29(23) 3339-3344 (1990)

Optical systems for digit-serial computation

Caroline J. Perlee and David P. Casasent
Appl. Opt. 28(3) 611-626 (1989)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (5)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (24)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription