Abstract

A novel design for a dc-excited cw CO2 metal waveguide laser has been developed in which a slotted hollow cathode also doubles as a metal waveguide for the cavity modes. This design has been implemented in a compact structure that produces over 1 W of cw 10.6-μm radiation. The discharge characteristics, laser gain, and laser output have been studied as functions of various discharge parameters. The advantages of the transverse discharge of the slotted hollow cathode geometry include low voltage, positive impedance, rugged structure, and high optical gain. Overall efficiency is comparable with that of conventional longitudinal CO2 lasers. The output laser modes are clean low-order Hermite-Gaussian or Airy function modes.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett. 19, 132–134 (1971).
    [CrossRef]
  2. J. J. Degnan, “The Waveguide Laser: A review,” Appl. Phys. 11, 1–33 (1976).
    [CrossRef]
  3. P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
    [CrossRef]
  4. E. A. J. Marcatili, R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  5. H. Krammer, “Field Configuration and Propagation Constants of Modes in Hollow Rectangular Dielectric Waveguides,” IEEE J. Quantum Electron. QE-12, 505–507 (1976).
    [CrossRef]
  6. B. Adam, F. Kneubuhl, “Transversely-Excited 337 μm HCN Waveguide Laser,” Appl. Phys. 8, 281–291 (1975).
    [CrossRef]
  7. E. Garmire, T. McMahon, M. Bass, “Propagation of Infrared Light in Flexible Hollow Waveguides,” Appl. Opt. 15, 145–150 (1976).
    [CrossRef] [PubMed]
  8. L. W. Casperson, T. S. Garfield, “Guided Beams in Concave Metallic Waveguides,” IEEE J. Quantum Electron. QE-15, 491–496 (1979).
    [CrossRef]
  9. D. A. Pinnow et al., “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
    [CrossRef]
  10. Y. Mimura, C. Ota, “Transmission of CO2 Laser Power by Single-Crystal CsBr Fibers,” Appl. Phys. Lett. 40, 773–775 (1982).
    [CrossRef]
  11. M. E. Marhic, L. I. Kwan, M. Epstein, “Whispering-Gallery CO2 Laser,” IEEE J. Quantum Electron. QE-15, 487–490 (1979).
    [CrossRef]
  12. J. G. Grossman, L. W. Casperson, O. M. Stafsudd, “Radio-Frequency-Excited Carbon Dioxide Metal Waveguide Laser,” Appl. Opt. 22, 1298–1305 (1983).
    [CrossRef] [PubMed]
  13. K. T.-K. Cheng, L. W. Casperson, “Properties of a Coaxial cw CO2 Laser,” Appl. Opt. 18, 2130–2135 (1979).
    [CrossRef] [PubMed]
  14. D. J. Sturges, H. J. Oskam, “Hollow-Cathode Discharge in Hydrogen and Noble Gases,” J. Appl. Phys. 37, 2405–2412 (1986).
    [CrossRef]
  15. R. F. Little, A. V. Engel, “The Hollow-Cathode Effect and Theory of Glow Discharge,” Proc. R. Soc. London Ser. A 224, 209–227 (1954).
    [CrossRef]
  16. K. Fujii et al., “Design of Whitelight Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35–43 (1979).
    [CrossRef]
  17. S. Hashiguchi, M. Hasikuni, “Theory of the Hollow Cathode Glow Discharge,” Jpn. J. Appl. Phys. 26, 271–280 (1987).
    [CrossRef]
  18. V. P. Chebotayev, “Operating Condition of an Optical Maser Containing a He–Ne Mixture,” Radio Eng. Electron. Phys. USA 10, 314–316 (1965).
  19. S. C. Wang, A. E. Siegman, “Hollow-Cathode Transverse Discharge He–Cd+ Lasers,” Appl. Phys. 2, 143–150 (1973).
    [CrossRef]
  20. C. S. Willet, G. M. Janny, “Amplification at 10.6 μ in the Negative Glow of Hollow Cathode Discharge in a CO2–He Mixture,” IEEE J. Quantum Electron. QE-6, 568–569 (1970).
    [CrossRef]
  21. R. J. Frieberg, P. O. Clark, “CO2 Transverse Discharge Lasers,” IEEE J. Quantum Electron. QE-7, 581–583 (1971).
  22. E. T. Gerry, D. A. Leonard, “Measurement of 10.6 microns CO2 Laser Transition Probability and Optical Broadening Cross Section,” Appl. Phys. Lett. 8, 227–229 (1966).
    [CrossRef]
  23. V. A. Seguin et al., “Gain Characteristics of a MAGPIE Coaxial CO2 Laser System,” IEEE J. Quantum Electron. QE-23, 600–604 (1987).
    [CrossRef]
  24. A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1968), Chap. 3.
  25. J. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixture,” J. Appl. Phys. 44, 4664–4471 (1973).
    [CrossRef]
  26. R. L. Abrams, A. N. Chester, “Resonator Theory for Hollow Waveguide Lasers,” Appl. Opt. 13, 2117–2125 (1974).
    [CrossRef] [PubMed]
  27. M. E. Marhic, L. I. Kwan, M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett. 33, 609–611 (1979).
    [CrossRef]

1987

S. Hashiguchi, M. Hasikuni, “Theory of the Hollow Cathode Glow Discharge,” Jpn. J. Appl. Phys. 26, 271–280 (1987).
[CrossRef]

V. A. Seguin et al., “Gain Characteristics of a MAGPIE Coaxial CO2 Laser System,” IEEE J. Quantum Electron. QE-23, 600–604 (1987).
[CrossRef]

1986

D. J. Sturges, H. J. Oskam, “Hollow-Cathode Discharge in Hydrogen and Noble Gases,” J. Appl. Phys. 37, 2405–2412 (1986).
[CrossRef]

1983

1982

Y. Mimura, C. Ota, “Transmission of CO2 Laser Power by Single-Crystal CsBr Fibers,” Appl. Phys. Lett. 40, 773–775 (1982).
[CrossRef]

1981

P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
[CrossRef]

1979

L. W. Casperson, T. S. Garfield, “Guided Beams in Concave Metallic Waveguides,” IEEE J. Quantum Electron. QE-15, 491–496 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Whispering-Gallery CO2 Laser,” IEEE J. Quantum Electron. QE-15, 487–490 (1979).
[CrossRef]

K. T.-K. Cheng, L. W. Casperson, “Properties of a Coaxial cw CO2 Laser,” Appl. Opt. 18, 2130–2135 (1979).
[CrossRef] [PubMed]

K. Fujii et al., “Design of Whitelight Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35–43 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett. 33, 609–611 (1979).
[CrossRef]

1978

D. A. Pinnow et al., “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
[CrossRef]

1976

H. Krammer, “Field Configuration and Propagation Constants of Modes in Hollow Rectangular Dielectric Waveguides,” IEEE J. Quantum Electron. QE-12, 505–507 (1976).
[CrossRef]

J. J. Degnan, “The Waveguide Laser: A review,” Appl. Phys. 11, 1–33 (1976).
[CrossRef]

E. Garmire, T. McMahon, M. Bass, “Propagation of Infrared Light in Flexible Hollow Waveguides,” Appl. Opt. 15, 145–150 (1976).
[CrossRef] [PubMed]

1975

B. Adam, F. Kneubuhl, “Transversely-Excited 337 μm HCN Waveguide Laser,” Appl. Phys. 8, 281–291 (1975).
[CrossRef]

1974

1973

J. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixture,” J. Appl. Phys. 44, 4664–4471 (1973).
[CrossRef]

S. C. Wang, A. E. Siegman, “Hollow-Cathode Transverse Discharge He–Cd+ Lasers,” Appl. Phys. 2, 143–150 (1973).
[CrossRef]

1971

R. J. Frieberg, P. O. Clark, “CO2 Transverse Discharge Lasers,” IEEE J. Quantum Electron. QE-7, 581–583 (1971).

P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett. 19, 132–134 (1971).
[CrossRef]

1970

C. S. Willet, G. M. Janny, “Amplification at 10.6 μ in the Negative Glow of Hollow Cathode Discharge in a CO2–He Mixture,” IEEE J. Quantum Electron. QE-6, 568–569 (1970).
[CrossRef]

1966

E. T. Gerry, D. A. Leonard, “Measurement of 10.6 microns CO2 Laser Transition Probability and Optical Broadening Cross Section,” Appl. Phys. Lett. 8, 227–229 (1966).
[CrossRef]

1965

V. P. Chebotayev, “Operating Condition of an Optical Maser Containing a He–Ne Mixture,” Radio Eng. Electron. Phys. USA 10, 314–316 (1965).

1964

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

1954

R. F. Little, A. V. Engel, “The Hollow-Cathode Effect and Theory of Glow Discharge,” Proc. R. Soc. London Ser. A 224, 209–227 (1954).
[CrossRef]

Abrams, R. L.

Adam, B.

B. Adam, F. Kneubuhl, “Transversely-Excited 337 μm HCN Waveguide Laser,” Appl. Phys. 8, 281–291 (1975).
[CrossRef]

Adams, C. R.

P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
[CrossRef]

Bass, M.

Casperson, L. W.

Chebotayev, V. P.

V. P. Chebotayev, “Operating Condition of an Optical Maser Containing a He–Ne Mixture,” Radio Eng. Electron. Phys. USA 10, 314–316 (1965).

Cheng, K. T.-K.

Chester, A. N.

Clark, P. O.

R. J. Frieberg, P. O. Clark, “CO2 Transverse Discharge Lasers,” IEEE J. Quantum Electron. QE-7, 581–583 (1971).

Degnan, J. J.

J. J. Degnan, “The Waveguide Laser: A review,” Appl. Phys. 11, 1–33 (1976).
[CrossRef]

Engel, A. V.

R. F. Little, A. V. Engel, “The Hollow-Cathode Effect and Theory of Glow Discharge,” Proc. R. Soc. London Ser. A 224, 209–227 (1954).
[CrossRef]

Epstein, M.

M. E. Marhic, L. I. Kwan, M. Epstein, “Whispering-Gallery CO2 Laser,” IEEE J. Quantum Electron. QE-15, 487–490 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett. 33, 609–611 (1979).
[CrossRef]

Frieberg, R. J.

R. J. Frieberg, P. O. Clark, “CO2 Transverse Discharge Lasers,” IEEE J. Quantum Electron. QE-7, 581–583 (1971).

Fujii, K.

K. Fujii et al., “Design of Whitelight Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35–43 (1979).
[CrossRef]

Garfield, T. S.

L. W. Casperson, T. S. Garfield, “Guided Beams in Concave Metallic Waveguides,” IEEE J. Quantum Electron. QE-15, 491–496 (1979).
[CrossRef]

Garmire, E.

Gerry, E. T.

E. T. Gerry, D. A. Leonard, “Measurement of 10.6 microns CO2 Laser Transition Probability and Optical Broadening Cross Section,” Appl. Phys. Lett. 8, 227–229 (1966).
[CrossRef]

Grossman, J. G.

Hashiguchi, S.

S. Hashiguchi, M. Hasikuni, “Theory of the Hollow Cathode Glow Discharge,” Jpn. J. Appl. Phys. 26, 271–280 (1987).
[CrossRef]

Hasikuni, M.

S. Hashiguchi, M. Hasikuni, “Theory of the Hollow Cathode Glow Discharge,” Jpn. J. Appl. Phys. 26, 271–280 (1987).
[CrossRef]

Irwin, B. W.

J. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixture,” J. Appl. Phys. 44, 4664–4471 (1973).
[CrossRef]

Janny, G. M.

C. S. Willet, G. M. Janny, “Amplification at 10.6 μ in the Negative Glow of Hollow Cathode Discharge in a CO2–He Mixture,” IEEE J. Quantum Electron. QE-6, 568–569 (1970).
[CrossRef]

Kneubuhl, F.

B. Adam, F. Kneubuhl, “Transversely-Excited 337 μm HCN Waveguide Laser,” Appl. Phys. 8, 281–291 (1975).
[CrossRef]

Krammer, H.

H. Krammer, “Field Configuration and Propagation Constants of Modes in Hollow Rectangular Dielectric Waveguides,” IEEE J. Quantum Electron. QE-12, 505–507 (1976).
[CrossRef]

Kwan, L. I.

M. E. Marhic, L. I. Kwan, M. Epstein, “Whispering-Gallery CO2 Laser,” IEEE J. Quantum Electron. QE-15, 487–490 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett. 33, 609–611 (1979).
[CrossRef]

Leonard, D. A.

E. T. Gerry, D. A. Leonard, “Measurement of 10.6 microns CO2 Laser Transition Probability and Optical Broadening Cross Section,” Appl. Phys. Lett. 8, 227–229 (1966).
[CrossRef]

Little, R. F.

R. F. Little, A. V. Engel, “The Hollow-Cathode Effect and Theory of Glow Discharge,” Proc. R. Soc. London Ser. A 224, 209–227 (1954).
[CrossRef]

Lowke, J. J.

J. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixture,” J. Appl. Phys. 44, 4664–4471 (1973).
[CrossRef]

Maloney, P. J.

P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
[CrossRef]

Marcatili, E. A. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Marhic, M. E.

M. E. Marhic, L. I. Kwan, M. Epstein, “Whispering-Gallery CO2 Laser,” IEEE J. Quantum Electron. QE-15, 487–490 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett. 33, 609–611 (1979).
[CrossRef]

McMahon, T.

Mimura, Y.

Y. Mimura, C. Ota, “Transmission of CO2 Laser Power by Single-Crystal CsBr Fibers,” Appl. Phys. Lett. 40, 773–775 (1982).
[CrossRef]

Oskam, H. J.

D. J. Sturges, H. J. Oskam, “Hollow-Cathode Discharge in Hydrogen and Noble Gases,” J. Appl. Phys. 37, 2405–2412 (1986).
[CrossRef]

Ota, C.

Y. Mimura, C. Ota, “Transmission of CO2 Laser Power by Single-Crystal CsBr Fibers,” Appl. Phys. Lett. 40, 773–775 (1982).
[CrossRef]

Phelps, A. V.

J. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixture,” J. Appl. Phys. 44, 4664–4471 (1973).
[CrossRef]

Pinnow, D. A.

D. A. Pinnow et al., “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
[CrossRef]

Schmeltzer, R. A.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

Seguin, V. A.

V. A. Seguin et al., “Gain Characteristics of a MAGPIE Coaxial CO2 Laser System,” IEEE J. Quantum Electron. QE-23, 600–604 (1987).
[CrossRef]

Siegman, A. E.

S. C. Wang, A. E. Siegman, “Hollow-Cathode Transverse Discharge He–Cd+ Lasers,” Appl. Phys. 2, 143–150 (1973).
[CrossRef]

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1968), Chap. 3.

Smith, P. W.

P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
[CrossRef]

P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett. 19, 132–134 (1971).
[CrossRef]

Stafsudd, O. M.

Sturges, D. J.

D. J. Sturges, H. J. Oskam, “Hollow-Cathode Discharge in Hydrogen and Noble Gases,” J. Appl. Phys. 37, 2405–2412 (1986).
[CrossRef]

Wang, S. C.

S. C. Wang, A. E. Siegman, “Hollow-Cathode Transverse Discharge He–Cd+ Lasers,” Appl. Phys. 2, 143–150 (1973).
[CrossRef]

Willet, C. S.

C. S. Willet, G. M. Janny, “Amplification at 10.6 μ in the Negative Glow of Hollow Cathode Discharge in a CO2–He Mixture,” IEEE J. Quantum Electron. QE-6, 568–569 (1970).
[CrossRef]

Wood, O. R.

P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
[CrossRef]

Appl. Opt.

Appl. Phys.

S. C. Wang, A. E. Siegman, “Hollow-Cathode Transverse Discharge He–Cd+ Lasers,” Appl. Phys. 2, 143–150 (1973).
[CrossRef]

B. Adam, F. Kneubuhl, “Transversely-Excited 337 μm HCN Waveguide Laser,” Appl. Phys. 8, 281–291 (1975).
[CrossRef]

J. J. Degnan, “The Waveguide Laser: A review,” Appl. Phys. 11, 1–33 (1976).
[CrossRef]

Appl. Phys. Lett.

P. W. Smith, “A Waveguide Gas Laser,” Appl. Phys. Lett. 19, 132–134 (1971).
[CrossRef]

D. A. Pinnow et al., “Polycrystalline Fiber Optical Waveguides for Infrared Transmission,” Appl. Phys. Lett. 33, 28–29 (1978).
[CrossRef]

Y. Mimura, C. Ota, “Transmission of CO2 Laser Power by Single-Crystal CsBr Fibers,” Appl. Phys. Lett. 40, 773–775 (1982).
[CrossRef]

E. T. Gerry, D. A. Leonard, “Measurement of 10.6 microns CO2 Laser Transition Probability and Optical Broadening Cross Section,” Appl. Phys. Lett. 8, 227–229 (1966).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Optical Surface Waves Along a Toroidal Metallic Guide,” Appl. Phys. Lett. 33, 609–611 (1979).
[CrossRef]

Bell Syst. Tech. J.

E. A. J. Marcatili, R. A. Schmeltzer, “Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

IEEE J. Quantum Electron.

H. Krammer, “Field Configuration and Propagation Constants of Modes in Hollow Rectangular Dielectric Waveguides,” IEEE J. Quantum Electron. QE-12, 505–507 (1976).
[CrossRef]

P. W. Smith, O. R. Wood, P. J. Maloney, C. R. Adams, “Transversely Exited Waveguide Gas Lasers,” IEEE J. Quantum Electron. QE-17, 1166–1181 (1981).
[CrossRef]

L. W. Casperson, T. S. Garfield, “Guided Beams in Concave Metallic Waveguides,” IEEE J. Quantum Electron. QE-15, 491–496 (1979).
[CrossRef]

M. E. Marhic, L. I. Kwan, M. Epstein, “Whispering-Gallery CO2 Laser,” IEEE J. Quantum Electron. QE-15, 487–490 (1979).
[CrossRef]

K. Fujii et al., “Design of Whitelight Laser Based on Cathode Fall Theory,” IEEE J. Quantum Electron. QE-15, 35–43 (1979).
[CrossRef]

V. A. Seguin et al., “Gain Characteristics of a MAGPIE Coaxial CO2 Laser System,” IEEE J. Quantum Electron. QE-23, 600–604 (1987).
[CrossRef]

C. S. Willet, G. M. Janny, “Amplification at 10.6 μ in the Negative Glow of Hollow Cathode Discharge in a CO2–He Mixture,” IEEE J. Quantum Electron. QE-6, 568–569 (1970).
[CrossRef]

R. J. Frieberg, P. O. Clark, “CO2 Transverse Discharge Lasers,” IEEE J. Quantum Electron. QE-7, 581–583 (1971).

J. Appl. Phys.

J. J. Lowke, A. V. Phelps, B. W. Irwin, “Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2–He Laser Mixture,” J. Appl. Phys. 44, 4664–4471 (1973).
[CrossRef]

D. J. Sturges, H. J. Oskam, “Hollow-Cathode Discharge in Hydrogen and Noble Gases,” J. Appl. Phys. 37, 2405–2412 (1986).
[CrossRef]

Jpn. J. Appl. Phys.

S. Hashiguchi, M. Hasikuni, “Theory of the Hollow Cathode Glow Discharge,” Jpn. J. Appl. Phys. 26, 271–280 (1987).
[CrossRef]

Proc. R. Soc. London Ser. A

R. F. Little, A. V. Engel, “The Hollow-Cathode Effect and Theory of Glow Discharge,” Proc. R. Soc. London Ser. A 224, 209–227 (1954).
[CrossRef]

Radio Eng. Electron. Phys. USA

V. P. Chebotayev, “Operating Condition of an Optical Maser Containing a He–Ne Mixture,” Radio Eng. Electron. Phys. USA 10, 314–316 (1965).

Other

A. E. Siegman, An Introduction to Lasers and Masers (McGraw-Hill, New York, 1968), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Directcurrent-excited CO2 metal waveguide laser.

Fig. 2
Fig. 2

Slotted hollow cathode discharge system configuration.

Fig. 3
Fig. 3

Voltage-current characteristics of the waveguide discharge.

Fig. 4
Fig. 4

Gain measurement apparatus.

Fig. 5
Fig. 5

Gain as a function of He/CO2 ratio at 7 Torr.

Fig. 6
Fig. 6

Gain as a function of N2/CO2 ratio at 7 Torr.

Fig. 7
Fig. 7

Gain as a function of pressure.

Fig. 8
Fig. 8

Gain profile for the 1:3.2:14.2 gas mixture at 7 Torr.

Fig. 9
Fig. 9

Waveguide coordinate system.

Fig. 10
Fig. 10

Laser power as a function of current for different gas mixtures at 7 Torr.

Fig. 11
Fig. 11

Laser power as a function of current for the 1:3.2:14.2 gas mixture at 7 and 10 Torr.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

g 0 = 1 L ln I ( L ) I ( 0 ) = 1 L ln I on I off ,
E m n ( r , ϕ , z ) = E 0 F [ ( 2 k 0 2 r 0 ) 1 3 r ρ n ] H m ( 2 z w s ) × exp ( z 2 w s 2 ) exp [ i ( ψ k 0 z ) ] ,
w s = [ 2 ( r 0 R 0 ) 1 / 2 k 0 ] 1 / 2 .
E m n ( x , y , z ) = E 0 w 0 w ( z ) H m ( 2 x w ( z ) ) H n ( 2 y w ( z ) ) × exp [ i k 0 x 2 + y 2 2 R ( z ) x 2 + y 2 w 2 ( z ) ] exp [ i ( k 0 z + ψ ) ] ,
w 2 ( z ) = w 0 2 [ 1 + ( z z 0 ) 2 ]
w 0 2 = λ π ( d R ) 1 / 2 ( 1 d R ) 1 / 2 ,
z 0 = π w 0 2 λ ,

Metrics