Abstract

A rapid thermal annealing (RTA) system has been used to initiate indiffusion of Ti into LiNbO3 for fabrication of optical channel waveguides. Four separate processes are investigated, each with different RTA temperature vs time variations followed by furnace heating. The sample processed with a fast initial ramp of temperature vs time to 875°C yielded the lowest waveguide propagation loss of 1 dB/cm at a wavelength of 632.8 nm, compared with samples processed with other RTA variations and with a sample undergoing only furnace processing. Use of a dry O2 ambient during RTA resulted in a smoother waveguide surface with no outdiffusion, when compared with use of a wet O2 ambient.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, S. R. Wilson, R. Powell, D. E. Davies, Eds., Rapid Thermal Processing of Electronic Materials, MRS Proceedings, Vol. 92 (1987).
  2. R. V. Schmidt, I. P. Kaminow, “Metal-Diffused Optical Waveguides In LiNbO3,” Appl. Phys. Lett. 25, 458 (1974).
    [CrossRef]
  3. A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987).
    [CrossRef]
  4. R. Chen, C. S. Tsai, “Thermally Annealed Single-Mode Proton-Exchanged Channel-Waveguide Cutoff Modulator,” Opt. Lett. 11, 546 (1986).
    [CrossRef] [PubMed]
  5. R. A. Becker, “Comparison of Guided-Wave Interferometric Modulators Fabricated on LiNbO3 via Ti Indiffusion and Proton Exchange,” Appl. Phys. Lett. 43, 131 (1983).
    [CrossRef]
  6. A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
    [CrossRef] [PubMed]
  7. D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Ex-changed Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264 (1986).
    [CrossRef] [PubMed]
  8. G. J. Griffiths, R. J. Esdaile, “Analysis of Titanium Diffused Planar Optical Waveguides in Lithium Niobate,” IEEE J. Quantum Electron. QE-20, 149 (1984).
    [CrossRef]
  9. O. Eknoyan, A. S. Greenblatt, W. K. Burns, C. H. Bulmer, “Characterization of Ti:LiNbO3 Deep Waveguides Diffused in Dry and Wet Oxygen Ambient,” Appl. Opt. 25, 737 (1986).
    [CrossRef] [PubMed]
  10. G. L. Destefanis et al., “The Formation of Waveguides and Modulators in LiNbO3 by Ion Implantation,” J. Appl. Phys. 50, 7898 (1979).
    [CrossRef]
  11. S. A. M. Al-Chalabi, “Low-Loss He+ Implanted LiNbO3 Waveguides Produced by Transient Annealing,” Appl. Phys. Lett. 47, 564 (1985).
    [CrossRef]
  12. B. L. Weiss, J. L. Flint, “The Characteristics of Optical Waveguide Fabricated in Y and Z cut LiNbO3 by He+ Implantation,” J. Appl. Phys. 60, 464 (1986).
    [CrossRef]
  13. B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
    [CrossRef]
  14. J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981).
    [CrossRef]
  15. Amphenol Data Sheet, Amphenol Fiber Optics Products, 1925 Ohio St., Lisle, IL 80532.
  16. M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
    [CrossRef]
  17. A. Carnera, Optical Waveguides in LiNbO3 Produced by Ti In-Diffusion, Ion Exchange and Ion Implantation in Electro-Optic and Photorefractive Materials, Springer Proceedings in Physics 18, 179, Edited by P. Gunter (Springer-Verlag, New York, 1987).

1987 (1)

A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987).
[CrossRef]

1986 (6)

R. Chen, C. S. Tsai, “Thermally Annealed Single-Mode Proton-Exchanged Channel-Waveguide Cutoff Modulator,” Opt. Lett. 11, 546 (1986).
[CrossRef] [PubMed]

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Ex-changed Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264 (1986).
[CrossRef] [PubMed]

O. Eknoyan, A. S. Greenblatt, W. K. Burns, C. H. Bulmer, “Characterization of Ti:LiNbO3 Deep Waveguides Diffused in Dry and Wet Oxygen Ambient,” Appl. Opt. 25, 737 (1986).
[CrossRef] [PubMed]

B. L. Weiss, J. L. Flint, “The Characteristics of Optical Waveguide Fabricated in Y and Z cut LiNbO3 by He+ Implantation,” J. Appl. Phys. 60, 464 (1986).
[CrossRef]

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

1985 (1)

S. A. M. Al-Chalabi, “Low-Loss He+ Implanted LiNbO3 Waveguides Produced by Transient Annealing,” Appl. Phys. Lett. 47, 564 (1985).
[CrossRef]

1984 (1)

G. J. Griffiths, R. J. Esdaile, “Analysis of Titanium Diffused Planar Optical Waveguides in Lithium Niobate,” IEEE J. Quantum Electron. QE-20, 149 (1984).
[CrossRef]

1983 (2)

R. A. Becker, “Comparison of Guided-Wave Interferometric Modulators Fabricated on LiNbO3 via Ti Indiffusion and Proton Exchange,” Appl. Phys. Lett. 43, 131 (1983).
[CrossRef]

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

1981 (1)

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

1979 (1)

G. L. Destefanis et al., “The Formation of Waveguides and Modulators in LiNbO3 by Ion Implantation,” J. Appl. Phys. 50, 7898 (1979).
[CrossRef]

1974 (1)

R. V. Schmidt, I. P. Kaminow, “Metal-Diffused Optical Waveguides In LiNbO3,” Appl. Phys. Lett. 25, 458 (1974).
[CrossRef]

Al-Chalabi, S. A. M.

S. A. M. Al-Chalabi, “Low-Loss He+ Implanted LiNbO3 Waveguides Produced by Transient Annealing,” Appl. Phys. Lett. 47, 564 (1985).
[CrossRef]

Al-Shukri, S. M.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

Appleton, B. R.

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

Armenise, M. N.

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

Ashley, P. R.

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

Beardsley, G. M.

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

Becker, R. A.

R. A. Becker, “Comparison of Guided-Wave Interferometric Modulators Fabricated on LiNbO3 via Ti Indiffusion and Proton Exchange,” Appl. Phys. Lett. 43, 131 (1983).
[CrossRef]

Bulmer, C. H.

Burns, W. K.

Canali, C.

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

Carnera, A.

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

A. Carnera, Optical Waveguides in LiNbO3 Produced by Ti In-Diffusion, Ion Exchange and Ion Implantation in Electro-Optic and Photorefractive Materials, Springer Proceedings in Physics 18, 179, Edited by P. Gunter (Springer-Verlag, New York, 1987).

Celotti, G.

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

Chen, R.

Christie, W. H.

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

Dawar, A. L.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

De La Rue, R. M.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

DeLaRue, R. M.

A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987).
[CrossRef]

DeSario, M.

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

Destefanis, G. L.

G. L. Destefanis et al., “The Formation of Waveguides and Modulators in LiNbO3 by Ion Implantation,” J. Appl. Phys. 50, 7898 (1979).
[CrossRef]

Eknoyan, O.

Esdaile, R. J.

G. J. Griffiths, R. J. Esdaile, “Analysis of Titanium Diffused Planar Optical Waveguides in Lithium Niobate,” IEEE J. Quantum Electron. QE-20, 149 (1984).
[CrossRef]

Farlow, G. C.

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

Flint, J. L.

B. L. Weiss, J. L. Flint, “The Characteristics of Optical Waveguide Fabricated in Y and Z cut LiNbO3 by He+ Implantation,” J. Appl. Phys. 60, 464 (1986).
[CrossRef]

Greenblatt, A. S.

Griffiths, G. J.

G. J. Griffiths, R. J. Esdaile, “Analysis of Titanium Diffused Planar Optical Waveguides in Lithium Niobate,” IEEE J. Quantum Electron. QE-20, 149 (1984).
[CrossRef]

Jackel, J. L.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

Kaminow, I. P.

R. V. Schmidt, I. P. Kaminow, “Metal-Diffused Optical Waveguides In LiNbO3,” Appl. Phys. Lett. 25, 458 (1974).
[CrossRef]

Loni, A.

A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987).
[CrossRef]

Lyman, S. P.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

Mazzoldi, P.

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

Nutt, A. C. G.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

Ramaswamy, V.

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

Schmidt, R. V.

R. V. Schmidt, I. P. Kaminow, “Metal-Diffused Optical Waveguides In LiNbO3,” Appl. Phys. Lett. 25, 458 (1974).
[CrossRef]

Stewart, G.

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

Tsai, C. S.

Weiss, B. L.

B. L. Weiss, J. L. Flint, “The Characteristics of Optical Waveguide Fabricated in Y and Z cut LiNbO3 by He+ Implantation,” J. Appl. Phys. 60, 464 (1986).
[CrossRef]

Winfield, J. M.

A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987).
[CrossRef]

Zang, D. Y.

Appl Opt. (1)

A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

R. V. Schmidt, I. P. Kaminow, “Metal-Diffused Optical Waveguides In LiNbO3,” Appl. Phys. Lett. 25, 458 (1974).
[CrossRef]

R. A. Becker, “Comparison of Guided-Wave Interferometric Modulators Fabricated on LiNbO3 via Ti Indiffusion and Proton Exchange,” Appl. Phys. Lett. 43, 131 (1983).
[CrossRef]

S. A. M. Al-Chalabi, “Low-Loss He+ Implanted LiNbO3 Waveguides Produced by Transient Annealing,” Appl. Phys. Lett. 47, 564 (1985).
[CrossRef]

J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. J. Griffiths, R. J. Esdaile, “Analysis of Titanium Diffused Planar Optical Waveguides in Lithium Niobate,” IEEE J. Quantum Electron. QE-20, 149 (1984).
[CrossRef]

J. Appl. Phys (1)

A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987).
[CrossRef]

J. Appl. Phys. (3)

G. L. Destefanis et al., “The Formation of Waveguides and Modulators in LiNbO3 by Ion Implantation,” J. Appl. Phys. 50, 7898 (1979).
[CrossRef]

B. L. Weiss, J. L. Flint, “The Characteristics of Optical Waveguide Fabricated in Y and Z cut LiNbO3 by He+ Implantation,” J. Appl. Phys. 60, 464 (1986).
[CrossRef]

M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983).
[CrossRef]

J. Mater. Res. (1)

B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987).
[CrossRef]

Opt. Lett. (1)

Other (3)

See, for example, S. R. Wilson, R. Powell, D. E. Davies, Eds., Rapid Thermal Processing of Electronic Materials, MRS Proceedings, Vol. 92 (1987).

Amphenol Data Sheet, Amphenol Fiber Optics Products, 1925 Ohio St., Lisle, IL 80532.

A. Carnera, Optical Waveguides in LiNbO3 Produced by Ti In-Diffusion, Ion Exchange and Ion Implantation in Electro-Optic and Photorefractive Materials, Springer Proceedings in Physics 18, 179, Edited by P. Gunter (Springer-Verlag, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Plots of relative light intensity at a wavelength of 632.8 nm scattered from channel waveguides as a function of distance along the waveguides. The straight lines represent a least-squares fit to the data. Different curves correspond to (a) sample 4, furnace processing, (b) sample 1, slow ramp RTA, (c) sample 2, two-step temperature RTA, and (d) sample 3, rapid step RTA.

Fig. 2
Fig. 2

Optical micrograph of channel waveguide surfaces for three different samples: (a) sample 5, RTA processing in a wet O2 ambient, (b) sample 6, RTA processing in a dry O2 ambient, and (c) sample 7, furnace processing only in a wet O2 ambient.

Tables (2)

Tables Icon

Table I Data for Different Optical Waveguide Samples Fabricated Using Y-Cut LiNbO3

Tables Icon

Table II Data for Different Optical Waveguide Samples Fabricated Using Z-Cut LiNbO3

Metrics