Abstract

A soft x-ray monochromator was developed for synchrotron radiation and installed at the Photon Factory in the National Laboratory for High Energy Physics. This monochromator consists of only two optical elements: a plane mirror and a varied-space plane grating with focusing properties. The 0.7–10-nm wavelength range can be covered with resolutions of 640 at 1.4 nm and 1200 at 5 nm. The output photon flux at wavelengths above 1 nm is ~1010–1011 photons/s for a 100-mA beam current in the 1% spectral bandwidth.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. L. Johnson, “Grazing Incidence Monochromator for Synchrotron Radiation: a Review,” Nucl. Instrum. Methods A 246, 303 (1986).
    [CrossRef]
  2. W. Eberhardt, G. Kalkoffen, C. Kunz, “Grazing Incidence Monochromator Flipper,” Nucl. Instrum. Methods 152, 81 (1978).
    [CrossRef]
  3. M. R. Howells, “Plane Grating Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods 177, 127 (1980).
    [CrossRef]
  4. H. Petersen, “The Plane Grating and Elliptical Mirror: a New Optical Configuration for Monochromators,” Opt. Commun. 40, 402 (1982).
    [CrossRef]
  5. W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
    [CrossRef]
  6. D. E. Aspnes, “High-Efficiency Concave-Grating Monochromator with Wavelength-Independent Focusing Characteristics,” J. Opt. Soc. Am. 72, 1056 (1982).
    [CrossRef]
  7. M. C. Hettrick, S. Bowyer, “Variable Line-Space Gratings: New Designs for Use in Grazing Incidence Spectrometers,” Appl. Opt. 22, 3921 (1983).
    [CrossRef] [PubMed]
  8. M. C. Hettrick, S. Bowyer, R. F. Malina, C. Martin, S. Mrowka, “Extreme Ultraviolet Explorer Spectrometer,” Appl. Opt. 24, 1737 (1985).
    [CrossRef] [PubMed]
  9. T. Harada, M. Itou, T. Kita, “A Grazing Incidence Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 503, 114 (1984).
  10. T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
    [CrossRef]
  11. M. Itou, T. Harada, T. Kita, “A Soft X-Ray Plane Grating Monochromator for Synchrotron Radiation,” in Abstracts, Eighth International Conference on Vacuum Ultraviolet Radiation Physics, Lund, Sweden (Aug.1986), Vol. 1, p. 289.
  12. T. Harada, T. Kita, “Mechanically Ruled Aberration-Corrected Concave Gratings,” Appl. Opt. 19, 3987 (1980).
    [CrossRef] [PubMed]
  13. T. Namioka, “Theory of the Concave Grating. I,” J. Opt. Soc. Am. 49, 446 (1959).
    [CrossRef]
  14. T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).
  15. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.
  16. M. Neviere, D. Maystre, W. R. Hunter, “Use of Classical and Conical Diffraction Mountings for XUV Gratings,” J. Opt. Soc. Am. 68, 1106 (1978).
    [CrossRef]
  17. R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
    [CrossRef]
  18. K. Huke, “2.5 GeV Electron Storage Ring Construction at KEK-PF,” Nucl. Instrum. Methods 177, 1 (1980).
    [CrossRef]
  19. J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
    [CrossRef]
  20. G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
    [CrossRef]

1987 (1)

T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).

1986 (2)

R. L. Johnson, “Grazing Incidence Monochromator for Synchrotron Radiation: a Review,” Nucl. Instrum. Methods A 246, 303 (1986).
[CrossRef]

T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
[CrossRef]

1985 (1)

1984 (1)

T. Harada, M. Itou, T. Kita, “A Grazing Incidence Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 503, 114 (1984).

1983 (2)

J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
[CrossRef]

M. C. Hettrick, S. Bowyer, “Variable Line-Space Gratings: New Designs for Use in Grazing Incidence Spectrometers,” Appl. Opt. 22, 3921 (1983).
[CrossRef] [PubMed]

1982 (3)

D. E. Aspnes, “High-Efficiency Concave-Grating Monochromator with Wavelength-Independent Focusing Characteristics,” J. Opt. Soc. Am. 72, 1056 (1982).
[CrossRef]

H. Petersen, “The Plane Grating and Elliptical Mirror: a New Optical Configuration for Monochromators,” Opt. Commun. 40, 402 (1982).
[CrossRef]

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

1981 (1)

R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
[CrossRef]

1980 (3)

K. Huke, “2.5 GeV Electron Storage Ring Construction at KEK-PF,” Nucl. Instrum. Methods 177, 1 (1980).
[CrossRef]

M. R. Howells, “Plane Grating Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods 177, 127 (1980).
[CrossRef]

T. Harada, T. Kita, “Mechanically Ruled Aberration-Corrected Concave Gratings,” Appl. Opt. 19, 3987 (1980).
[CrossRef] [PubMed]

1978 (2)

M. Neviere, D. Maystre, W. R. Hunter, “Use of Classical and Conical Diffraction Mountings for XUV Gratings,” J. Opt. Soc. Am. 68, 1106 (1978).
[CrossRef]

W. Eberhardt, G. Kalkoffen, C. Kunz, “Grazing Incidence Monochromator Flipper,” Nucl. Instrum. Methods 152, 81 (1978).
[CrossRef]

1977 (1)

G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
[CrossRef]

1959 (1)

Aspnes, D. E.

Bowyer, S.

Bradford, R. C.

G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
[CrossRef]

Day, R. H.

R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
[CrossRef]

Dhez, P.

J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
[CrossRef]

Eberhardt, W.

W. Eberhardt, G. Kalkoffen, C. Kunz, “Grazing Incidence Monochromator Flipper,” Nucl. Instrum. Methods 152, 81 (1978).
[CrossRef]

Esteva, J. M.

J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
[CrossRef]

Fujikawa, B. K.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.

Gauthe, B.

J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
[CrossRef]

Harada, T.

T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).

T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
[CrossRef]

T. Harada, M. Itou, T. Kita, “A Grazing Incidence Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 503, 114 (1984).

T. Harada, T. Kita, “Mechanically Ruled Aberration-Corrected Concave Gratings,” Appl. Opt. 19, 3987 (1980).
[CrossRef] [PubMed]

M. Itou, T. Harada, T. Kita, “A Soft X-Ray Plane Grating Monochromator for Synchrotron Radiation,” in Abstracts, Eighth International Conference on Vacuum Ultraviolet Radiation Physics, Lund, Sweden (Aug.1986), Vol. 1, p. 289.

Henke, B. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.

Hettrick, M. C.

Howells, M. R.

M. R. Howells, “Plane Grating Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods 177, 127 (1980).
[CrossRef]

Huke, K.

K. Huke, “2.5 GeV Electron Storage Ring Construction at KEK-PF,” Nucl. Instrum. Methods 177, 1 (1980).
[CrossRef]

Hunter, W. R.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

M. Neviere, D. Maystre, W. R. Hunter, “Use of Classical and Conical Diffraction Mountings for XUV Gratings,” J. Opt. Soc. Am. 68, 1106 (1978).
[CrossRef]

Itou, M.

T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).

T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
[CrossRef]

T. Harada, M. Itou, T. Kita, “A Grazing Incidence Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 503, 114 (1984).

M. Itou, T. Harada, T. Kita, “A Soft X-Ray Plane Grating Monochromator for Synchrotron Radiation,” in Abstracts, Eighth International Conference on Vacuum Ultraviolet Radiation Physics, Lund, Sweden (Aug.1986), Vol. 1, p. 289.

Johnson, R. L.

R. L. Johnson, “Grazing Incidence Monochromator for Synchrotron Radiation: a Review,” Nucl. Instrum. Methods A 246, 303 (1986).
[CrossRef]

Kabler, M. N.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Kalkoffen, G.

W. Eberhardt, G. Kalkoffen, C. Kunz, “Grazing Incidence Monochromator Flipper,” Nucl. Instrum. Methods 152, 81 (1978).
[CrossRef]

Karnatak, R. C.

J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
[CrossRef]

King, G. C.

G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
[CrossRef]

Kirkland, J. P.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Kita, T.

T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).

T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
[CrossRef]

T. Harada, M. Itou, T. Kita, “A Grazing Incidence Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 503, 114 (1984).

T. Harada, T. Kita, “Mechanically Ruled Aberration-Corrected Concave Gratings,” Appl. Opt. 19, 3987 (1980).
[CrossRef] [PubMed]

M. Itou, T. Harada, T. Kita, “A Soft X-Ray Plane Grating Monochromator for Synchrotron Radiation,” in Abstracts, Eighth International Conference on Vacuum Ultraviolet Radiation Physics, Lund, Sweden (Aug.1986), Vol. 1, p. 289.

Kunz, C.

W. Eberhardt, G. Kalkoffen, C. Kunz, “Grazing Incidence Monochromator Flipper,” Nucl. Instrum. Methods 152, 81 (1978).
[CrossRef]

Lee, P.

R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
[CrossRef]

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.

Malina, R. F.

Martin, C.

Maystre, D.

Mrowka, S.

Nagel, D. J.

R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
[CrossRef]

Namioka, T.

Neviere, M.

Petersen, H.

H. Petersen, “The Plane Grating and Elliptical Mirror: a New Optical Configuration for Monochromators,” Opt. Commun. 40, 402 (1982).
[CrossRef]

Read, F. H.

G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
[CrossRef]

Rife, J. C.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Saloman, E. B.

R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
[CrossRef]

Shimabukuro, R. L.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.

Taira, H.

T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).

T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
[CrossRef]

Tanaka, T. J.

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.

Tronc, M.

G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
[CrossRef]

Williams, R. T.

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Appl. Opt. (3)

J. Appl. Phys. (1)

R. H. Day, P. Lee, E. B. Saloman, D. J. Nagel, “Photoelectric Quantum Efficiencies and Filter Window Absorption Coefficients from 20 eV to 10 keV,” J. Appl. Phys. 52, 6965 (1981).
[CrossRef]

J. Opt. Soc. Am. (3)

J. Phys. B (2)

J. M. Esteva, B. Gauthe, P. Dhez, R. C. Karnatak, “Double Excitation in the K Absorption Spectrum of Neon,” J. Phys. B 16, L263 (1983).
[CrossRef]

G. C. King, M. Tronc, F. H. Read, R. C. Bradford, “An Investigation of the Structure Near the L2,3 Edges of Argon, the M4,5 Edges of Krypton and the N4,5 Edges of Xenon, Using Electron Impact with High Resolution,” J. Phys. B 10, 2479 (1977).
[CrossRef]

Nucl. Instrum. Methods (4)

K. Huke, “2.5 GeV Electron Storage Ring Construction at KEK-PF,” Nucl. Instrum. Methods 177, 1 (1980).
[CrossRef]

W. Eberhardt, G. Kalkoffen, C. Kunz, “Grazing Incidence Monochromator Flipper,” Nucl. Instrum. Methods 152, 81 (1978).
[CrossRef]

M. R. Howells, “Plane Grating Monochromators for Synchrotron Radiation,” Nucl. Instrum. Methods 177, 127 (1980).
[CrossRef]

W. R. Hunter, R. T. Williams, J. C. Rife, J. P. Kirkland, M. N. Kabler, “A Grating/Crystal Monochromator for the Spectral Range 5 eV to 5 keV,” Nucl. Instrum. Methods 195, 141 (1982).
[CrossRef]

Nucl. Instrum. Methods A (2)

R. L. Johnson, “Grazing Incidence Monochromator for Synchrotron Radiation: a Review,” Nucl. Instrum. Methods A 246, 303 (1986).
[CrossRef]

T. Harada, T. Kita, M. Itou, H. Taira, “Mechanically Ruled Diffraction Gratings for Synchrotron Radiation,” Nucl. Instrum. Methods A 246, 272 (1986).
[CrossRef]

Opt. Commun. (1)

H. Petersen, “The Plane Grating and Elliptical Mirror: a New Optical Configuration for Monochromators,” Opt. Commun. 40, 402 (1982).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (2)

T. Harada, M. Itou, T. Kita, “A Grazing Incidence Monochromator with a Varied-Space Plane Grating for Synchrotron Radiation,” Proc. Soc. Photo-Opt. Instrum. Eng. 503, 114 (1984).

T. Harada, H. Taira, T. Kita, M. Itou, “Groove Profile Measurement of Diffraction Gratings Using Scanning Electron Microscope,” Proc. Soc. Photo-Opt. Instrum. Eng. 815, 118 (1987).

Other (2)

B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, B. K. Fujikawa, “The Atomic Scattering Factor, f1 + if2, for 94 Elements and for 100 eV to 2000 eV Photon Energy Region,” in Proceedings, AIP Conference on Low Energy X-Ray Diagnostics, Monterey, CA (June, 1981), Appendix p. 340.

M. Itou, T. Harada, T. Kita, “A Soft X-Ray Plane Grating Monochromator for Synchrotron Radiation,” in Abstracts, Eighth International Conference on Vacuum Ultraviolet Radiation Physics, Lund, Sweden (Aug.1986), Vol. 1, p. 289.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of the optical system.

Fig. 2
Fig. 2

Space variation of the grating.

Fig. 3
Fig. 3

Optical arrangement of the monochromator. The light source is assumed to be an entrance slit. The mirror and the grating are schematically shown for two wavelengths.

Fig. 4
Fig. 4

Angles of incidence on the mirror and the grating.

Fig. 5
Fig. 5

Groove profiles of the grating measured by a scanning electron microscope. The groove spacing is 450 nm; the blaze angle is 2°.

Fig. 6
Fig. 6

Mechanical arrangement of the monochromator.

Fig. 7
Fig. 7

External view of the monochromator.

Fig. 8
Fig. 8

Ray-traced spectral images at the exit slit plane. The source size is assumed to be 4.5 mm horizontally by 1.5 mm vertically.

Fig. 9
Fig. 9

Calculated image width and resolution.

Fig. 10
Fig. 10

Calculated reflectivities of the mirror and the grating.

Fig. 11
Fig. 11

Spectrum of the output intensity measured by a gold photocathode. Data include the contributions from stray light and higher-order light.

Fig. 12
Fig. 12

Absorption spectrum of the krypton L2,3 edge. The structures at ~0.7 nm show that monochromatic photons are obtained.

Fig. 13
Fig. 13

Absorption spectrum of the neon K edge. The reported natural width of the 1s → 3p line is 4.9 × 10−4 nm.

Fig. 14
Fig. 14

Absorption spectrum of the argon L2,3 edge. The reported natural width of the 2p3/2 → 4s line is 2.5 × 10−3 nm.

Tables (1)

Tables Icon

Table I Output Photon Flux and Transmittance of the Monochromator; Data Include Possible Errors of 50–100%

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

F = A P + P B + n m λ ,
A P 2 = r 1 2 + w 2 + l 2 - 2 w r 1 sin α ,
P B 2 = r 2 2 + w 2 + l 2 - 2 w r 2 sin β ,
n = 1 σ 0 ( w + b 2 w 2 + b 3 w 3 + b 4 w 4 + ) ,
σ = σ 0 1 + 2 b 2 w + 3 b 3 w 2 + 4 b 4 w 3 + .
F = r 1 + r 2 + w F 10 + w 2 F 20 + l 2 F 02 + w 3 F 30 + w l 2 F 12 + w 4 F 40 +
F i j = C i j + m λ σ 0 M i j .
C 10 = - sin α - sin β ,
C 20 = 1 2 ( cos 2 α r 1 + cos 2 β r 2 ) ,
C 02 = 1 2 ( 1 r 1 + 1 r 2 ) ,
C 30 = 1 2 ( sin α cos 2 α r 1 2 + sin β cos 2 β r 2 2 ) ,
C 12 = 1 2 ( sin α r 1 2 + sin β r 2 2 ) ,
C 40 = 1 8 ( 4 sin 2 α cos 2 α - cos 4 α r 1 3 + 4 sin 2 β cos 2 β - cos 4 β r 2 3 ) ,
M 10 = 1 ,
M 20 = b 2 ,
M 02 = 0 ,
M 30 = b 3 ,
M 12 = 0 ,
M 40 = b 4 .
sin α + sin β = m λ σ 0 .
Δ y = r 2 cos β F w ,
Δ z = r 2 F l .
1 2 ( cos 2 α r 1 + cos 2 β r 2 ) + m λ b 2 σ 0 = 0.
A sin 2 α + 2 B sin α + C = 0 ,
A = 1 r 1 + 1 r 2 ,
B = - m λ r 2 σ 0 ,
C = 1 r 2 ( m λ σ 0 ) 2 - 2 m λ b 2 σ 0 - 1 r 1 - 1 r 2 .
θ = ½ ( α - β + δ ) ,
α + β = 2 θ B ,
T = R M R G ɛ ,
d r 2 d α = 2 r 2 cos α ( r 1 sin β - r 2 sin α ) r 1 cos 2 β .
s = s 0 + 2 a Δ α d r 2 d α ,

Metrics