Abstract

No abstract available.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Johnson, H. J. Guggenheim, “Electronic and Phonon-Terminated Laser Emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
    [CrossRef]
  2. Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
    [CrossRef]
  3. S. A. Pollack, D. B. Chang, N. L. Moise, “Continuous Wave and Q-Switched Infrared Erbium Laser,” Appl. Phys. Lett. 49, 1578 (1986).
    [CrossRef]
  4. M. C. Brierley, P. W. France, “Continuous Wave Lasing at 2.7 μm in an Erbium-Doped Fluorozirconate Fibre,” Electron. Lett. 24, 935 (1988).
    [CrossRef]
  5. F. Auzel, D. Meichenin, H. Poignant, “Laser Cross-Section and Quantum Yield of Er3+ at 2.7 μm in a ZrF4-Based Fluoride Glass,” Electron. Lett. 24, 909 (1988).
    [CrossRef]
  6. A. Yariv, J. P. Gordon, “The Laser,” Proc. IEEE 51, 4 (1963).
    [CrossRef]
  7. A. E. Seigman, Lasers (University Science Books, Mill Valley, CA, 1986), p. 39.
  8. G. M. Zverev, G. Ya. Kolodnyi, A. M. Onishchenko, “Nonradiative Transitions Between Levels of Trivalent Rare Earth Ions in Yttrium Aluminum Garnet Crystals,” Sov. Phys. JETP 33, 497(1971).
  9. C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses,” Phys. Rev. B 16, 10 (1977).
    [CrossRef]
  10. M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
    [CrossRef]

1988 (2)

M. C. Brierley, P. W. France, “Continuous Wave Lasing at 2.7 μm in an Erbium-Doped Fluorozirconate Fibre,” Electron. Lett. 24, 935 (1988).
[CrossRef]

F. Auzel, D. Meichenin, H. Poignant, “Laser Cross-Section and Quantum Yield of Er3+ at 2.7 μm in a ZrF4-Based Fluoride Glass,” Electron. Lett. 24, 909 (1988).
[CrossRef]

1986 (1)

S. A. Pollack, D. B. Chang, N. L. Moise, “Continuous Wave and Q-Switched Infrared Erbium Laser,” Appl. Phys. Lett. 49, 1578 (1986).
[CrossRef]

1983 (2)

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
[CrossRef]

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

1977 (1)

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

1974 (1)

L. F. Johnson, H. J. Guggenheim, “Electronic and Phonon-Terminated Laser Emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

1971 (1)

G. M. Zverev, G. Ya. Kolodnyi, A. M. Onishchenko, “Nonradiative Transitions Between Levels of Trivalent Rare Earth Ions in Yttrium Aluminum Garnet Crystals,” Sov. Phys. JETP 33, 497(1971).

1963 (1)

A. Yariv, J. P. Gordon, “The Laser,” Proc. IEEE 51, 4 (1963).
[CrossRef]

Auzel, F.

F. Auzel, D. Meichenin, H. Poignant, “Laser Cross-Section and Quantum Yield of Er3+ at 2.7 μm in a ZrF4-Based Fluoride Glass,” Electron. Lett. 24, 909 (1988).
[CrossRef]

Bagdasarov, Kh. S.

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

Brierley, M. C.

M. C. Brierley, P. W. France, “Continuous Wave Lasing at 2.7 μm in an Erbium-Doped Fluorozirconate Fibre,” Electron. Lett. 24, 935 (1988).
[CrossRef]

Brown, R. N.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
[CrossRef]

Chang, D. B.

S. A. Pollack, D. B. Chang, N. L. Moise, “Continuous Wave and Q-Switched Infrared Erbium Laser,” Appl. Phys. Lett. 49, 1578 (1986).
[CrossRef]

Drexhage, M. G.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
[CrossRef]

France, P. W.

M. C. Brierley, P. W. France, “Continuous Wave Lasing at 2.7 μm in an Erbium-Doped Fluorozirconate Fibre,” Electron. Lett. 24, 935 (1988).
[CrossRef]

Gordon, J. P.

A. Yariv, J. P. Gordon, “The Laser,” Proc. IEEE 51, 4 (1963).
[CrossRef]

Guggenheim, H. J.

L. F. Johnson, H. J. Guggenheim, “Electronic and Phonon-Terminated Laser Emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

Johnson, L. F.

L. F. Johnson, H. J. Guggenheim, “Electronic and Phonon-Terminated Laser Emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

Kolodnyi, G. Ya.

G. M. Zverev, G. Ya. Kolodnyi, A. M. Onishchenko, “Nonradiative Transitions Between Levels of Trivalent Rare Earth Ions in Yttrium Aluminum Garnet Crystals,” Sov. Phys. JETP 33, 497(1971).

Layne, C. B.

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Lobachev, V. A.

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

Lowdermilk, W. H.

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Meichenin, D.

F. Auzel, D. Meichenin, H. Poignant, “Laser Cross-Section and Quantum Yield of Er3+ at 2.7 μm in a ZrF4-Based Fluoride Glass,” Electron. Lett. 24, 909 (1988).
[CrossRef]

Moise, N. L.

S. A. Pollack, D. B. Chang, N. L. Moise, “Continuous Wave and Q-Switched Infrared Erbium Laser,” Appl. Phys. Lett. 49, 1578 (1986).
[CrossRef]

Murina, T. M.

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

Onishchenko, A. M.

G. M. Zverev, G. Ya. Kolodnyi, A. M. Onishchenko, “Nonradiative Transitions Between Levels of Trivalent Rare Earth Ions in Yttrium Aluminum Garnet Crystals,” Sov. Phys. JETP 33, 497(1971).

Poignant, H.

F. Auzel, D. Meichenin, H. Poignant, “Laser Cross-Section and Quantum Yield of Er3+ at 2.7 μm in a ZrF4-Based Fluoride Glass,” Electron. Lett. 24, 909 (1988).
[CrossRef]

Pollack, S. A.

S. A. Pollack, D. B. Chang, N. L. Moise, “Continuous Wave and Q-Switched Infrared Erbium Laser,” Appl. Phys. Lett. 49, 1578 (1986).
[CrossRef]

Prokhorov, A. M.

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

Seigman, A. E.

A. E. Seigman, Lasers (University Science Books, Mill Valley, CA, 1986), p. 39.

Shinn, M. D.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
[CrossRef]

Sibley, W. A.

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
[CrossRef]

Weber, M. J.

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

Yariv, A.

A. Yariv, J. P. Gordon, “The Laser,” Proc. IEEE 51, 4 (1963).
[CrossRef]

Zhekov, V. I.

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

Zverev, G. M.

G. M. Zverev, G. Ya. Kolodnyi, A. M. Onishchenko, “Nonradiative Transitions Between Levels of Trivalent Rare Earth Ions in Yttrium Aluminum Garnet Crystals,” Sov. Phys. JETP 33, 497(1971).

Appl. Phys. Lett. (1)

S. A. Pollack, D. B. Chang, N. L. Moise, “Continuous Wave and Q-Switched Infrared Erbium Laser,” Appl. Phys. Lett. 49, 1578 (1986).
[CrossRef]

Electron. Lett. (2)

M. C. Brierley, P. W. France, “Continuous Wave Lasing at 2.7 μm in an Erbium-Doped Fluorozirconate Fibre,” Electron. Lett. 24, 935 (1988).
[CrossRef]

F. Auzel, D. Meichenin, H. Poignant, “Laser Cross-Section and Quantum Yield of Er3+ at 2.7 μm in a ZrF4-Based Fluoride Glass,” Electron. Lett. 24, 909 (1988).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. F. Johnson, H. J. Guggenheim, “Electronic and Phonon-Terminated Laser Emission from Ho3+ in BaY2F8,” IEEE J. Quantum Electron. QE-10, 442 (1974).
[CrossRef]

Phys. Rev. B (2)

C. B. Layne, W. H. Lowdermilk, M. J. Weber, “Multiphonon Relaxation of Rare-Earth Ions in Oxide Glasses,” Phys. Rev. B 16, 10 (1977).
[CrossRef]

M. D. Shinn, W. A. Sibley, M. G. Drexhage, R. N. Brown, “Optical Transitions of Er3+ Ions in Fluorozirconate Glass,” Phys. Rev. B 27, 6635 (1983).
[CrossRef]

Proc. IEEE (1)

A. Yariv, J. P. Gordon, “The Laser,” Proc. IEEE 51, 4 (1963).
[CrossRef]

Sov. J. Quantum Electron. (1)

Kh. S. Bagdasarov, V. I. Zhekov, V. A. Lobachev, T. M. Murina, A. M. Prokhorov, “Steady-State Emission From a Y3Al5O12:Er3+ laser,” Sov. J. Quantum Electron. 13, 262 (1983).
[CrossRef]

Sov. Phys. JETP (1)

G. M. Zverev, G. Ya. Kolodnyi, A. M. Onishchenko, “Nonradiative Transitions Between Levels of Trivalent Rare Earth Ions in Yttrium Aluminum Garnet Crystals,” Sov. Phys. JETP 33, 497(1971).

Other (1)

A. E. Seigman, Lasers (University Science Books, Mill Valley, CA, 1986), p. 39.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) General four-level laser scheme showing branching ratios to and decay rates from the lasing levels. (b) Corresponding levels ofEr3+. The pump level 4 can represent the 4I9/2 or any higher level.

Fig. 2
Fig. 2

Log (base 10) of fluorescence from 4I13/2 vs time, pumping at 514.5 nm. Theoretical fit to the data assuming W32 = 0 and 20 s−1 is also shown.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d N 3 d t = N 4 W 4 b 43 - N 3 W 3 ,
d N 2 d t = N 4 W 4 b 42 + N 3 W 32 - N 2 W 2 ,
N 3 N 2 = W 2 W 32 [ 1 + b 42 b 43 β 32 ] - 1 ,
W 2 > W 32 [ 1 + b 42 b 43 β 32 ] .

Metrics