Abstract

An excimer laser beam has a 1-D Gaussian intensity profile [Ig = A exp(−Y2/σ2)]. The fly’s eye lens composed of cylindrical lenses is designed to convert the Gaussian intensity profile into a uniform intensity profile. Effects of magnification and lens width of the cylindrical lenses on optical efficiency η and uniform intensity width 2Yu are investigated. The cylindrical fly’s eye lens system with η = 82% and Yu = 4σ is obtained by changing each cylindrical lens magnification. An experimental result shows that the cylindrical fly’s eye lens is a useful optical element for redistributing a Gaussian profile.

© 1989 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
    [CrossRef]
  2. P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
    [CrossRef]
  3. V. Pol et al., “Excimer laser-Based Lithography: a Deep Ultraviolet Wafer Stepper,” Proc. Soc. Photo-Opt. Instrum. Eng. 633, 8 (1986).
  4. T. E. Horton, J. H. McDermit, “Design of a Specular Aspheric Surface to Uniformly Radiate a Flat Surface Using a Nonuniform Collimated Radiation Source.” Trans. ASME J. Heat Transfer, C94, 453 (1972).
    [CrossRef]
  5. M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).
  6. P. W. Rhodes, D. L. Shealy, “Refractive Optical Systems for Irradiance Redistribution of Collimated Radiation: Their Design and Analysis,” Appl. Opt. 19, 3545 (1980).
    [CrossRef] [PubMed]
  7. C.-Y. Han, Y. Ishii, K. Murata, “Reshaping Collimated Laser Beams with Gaussian Profile to Uniform Profiles,” Appl. Opt. 22, 3644 (1983).
    [CrossRef] [PubMed]

1986

V. Pol et al., “Excimer laser-Based Lithography: a Deep Ultraviolet Wafer Stepper,” Proc. Soc. Photo-Opt. Instrum. Eng. 633, 8 (1986).

1985

P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
[CrossRef]

1983

1982

P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
[CrossRef]

1980

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).

P. W. Rhodes, D. L. Shealy, “Refractive Optical Systems for Irradiance Redistribution of Collimated Radiation: Their Design and Analysis,” Appl. Opt. 19, 3545 (1980).
[CrossRef] [PubMed]

1972

T. E. Horton, J. H. McDermit, “Design of a Specular Aspheric Surface to Uniformly Radiate a Flat Surface Using a Nonuniform Collimated Radiation Source.” Trans. ASME J. Heat Transfer, C94, 453 (1972).
[CrossRef]

Boyer, P. K.

P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
[CrossRef]

Brevibnon, M.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).

Carey, P. G.

P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
[CrossRef]

Collins, G. J.

P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
[CrossRef]

Dubroeucq, G. M.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).

Fahlen, T. S.

P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
[CrossRef]

Han, C.-Y.

Horton, T. E.

T. E. Horton, J. H. McDermit, “Design of a Specular Aspheric Surface to Uniformly Radiate a Flat Surface Using a Nonuniform Collimated Radiation Source.” Trans. ASME J. Heat Transfer, C94, 453 (1972).
[CrossRef]

Ishii, Y.

Lacombat, M.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).

Massin, J.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).

McDermit, J. H.

T. E. Horton, J. H. McDermit, “Design of a Specular Aspheric Surface to Uniformly Radiate a Flat Surface Using a Nonuniform Collimated Radiation Source.” Trans. ASME J. Heat Transfer, C94, 453 (1972).
[CrossRef]

Murata, K.

Pol, V.

V. Pol et al., “Excimer laser-Based Lithography: a Deep Ultraviolet Wafer Stepper,” Proc. Soc. Photo-Opt. Instrum. Eng. 633, 8 (1986).

Press, R. L.

P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
[CrossRef]

Rhodes, P. W.

Ritchie, W. H.

P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
[CrossRef]

Roche, G. A.

P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
[CrossRef]

Shealy, D. L.

Sigmon, T. W.

P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

P. K. Boyer, G. A. Roche, W. H. Ritchie, G. J. Collins, “Laser-Induced Chemical Vapor Deposition of SiO2,” Appl. Phys. Lett. 40, 716 (1982).
[CrossRef]

IEEE Trans. Electron Devices Lett.

P. G. Carey, T. W. Sigmon, R. L. Press, T. S. Fahlen, “Ultrashallow High-Concentration Boron Profiles for CMOS Processing,” IEEE Trans. Electron Devices Lett. EDL-6, 291 (1985).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

V. Pol et al., “Excimer laser-Based Lithography: a Deep Ultraviolet Wafer Stepper,” Proc. Soc. Photo-Opt. Instrum. Eng. 633, 8 (1986).

Solid State Technol.

M. Lacombat, G. M. Dubroeucq, J. Massin, M. Brevibnon, “Laser projection printing,” Solid State Technol. 23, 115 (1980).

Trans. ASME J. Heat Transfer

T. E. Horton, J. H. McDermit, “Design of a Specular Aspheric Surface to Uniformly Radiate a Flat Surface Using a Nonuniform Collimated Radiation Source.” Trans. ASME J. Heat Transfer, C94, 453 (1972).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Energy intensity distribution of an excimer laser beam in the XY plane perpendicular to the optical axis.

Fig. 2
Fig. 2

Calculation model for redistributing a Gaussian intensity profile with a cylindrical fly’s eye lens (CFEL). The Gaussian beam is collimated.

Fig. 3
Fig. 3

Energy intensity profile redistributed by the CFEL, where R/σ = 0.4 and k = 20.

Fig. 4
Fig. 4

Optical efficiency η and uniform intensity halfwidth Yu/σ of profiles redistributed by the CFEL. The CFEL is composed of equal magnification cylindrical lenses.

Fig. 5
Fig. 5

Optical efficiency η and uniform intensity halfwidth Yu/σ of profiles redistributed by the CFEL. The nth cylindrical lens magnification kn is expressed by kn = k0 + Δk · |n|.

Fig. 6
Fig. 6

Dependence of optical efficiency η and uniform intensity halfwidth Yu/σ on central cylindrical lens magnification k0. The Gaussian profile is redistributed by the CFEL composed of different magnification cylindrical lenses. Magnification kn is expressed by kn = k0 (1 + p · |n|).

Fig. 7
Fig. 7

Optical system used in the experiment to redistribute the Gaussian intensity profile of a KrF excimer laser beam.

Fig. 8
Fig. 8

Beam intensity profile incident on the CFEL, which was measured by moving a thermal detector with a 1-mm wide slit in the Y direction.

Fig. 9
Fig. 9

Profiles redistributed by the CFEL, measured using a thermal detector.

Fig. 10
Fig. 10

Surface roughness of the remaining resist film after exposure by the redistributed KrF laser beam and developing. The remaining resist thickness was 55 nm. In (a) the CFEL was stationary; in (b) the CFEL was moved 5 μm/laser pulse exposure in the Y direction.

Tables (1)

Tables Icon

Table I Comparison of Optical Efficiency η and Uniform Intensity Halfwidth Yu/σ Between Calculation and Experiment

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I g = A exp ( - Y 2 σ 2 ) ,
I n = { A k n exp { - [ Y - ( k n + 1 ) Y n ] 2 ( k n σ ) 2 } , 0 for Y - Y n k n R , for Y - Y n > k n R .
I = n = - m m I n .
η = - Y u Y u I d Y / - I g d Y ,
k n = k 0 + Δ k n ,
k n = k 0 ( 1 + p · n ) ,
p = Δ k k 0 .
k n = l f n - 1 ,
k n = k 0 [ 1 + p · n · ( 1 + Δ p ) ]
p · n = k n k 0 - 1.
Δ p = k n - k 0 k 0 · k 0 k n - k 0 - 1.
Δ p = f 0 l · l - l l - f 0 .

Metrics