Abstract

The temporal evolution of the velocity field of an unsteady fluid flow can be tracked by combining particle image velocimetry and high speed photography. We used this technique to investigate the flow around cavitation bubbles during their collapse near a solid boundary. The light source was an argon laser with an external acoustooptic deflector which produces series of short pulses. Using a drum camera for high speed photography, we achieved a temporal resolution of 10 kHz and a spatial resolution of better than 2 points/mm2. Velocities could be determined without directional ambiguity in a range from 2 to 30 m/s.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Grousson, S. Mallick, “Study of Flow Pattern in a Fluid by Scattered Laser Light,” Appl. Opt. 16, 2334 (1977).
    [CrossRef] [PubMed]
  2. D. B. Barker, M. E. Fourney, “Measuring Fluid Velocities with Speckle Patterns,” Opt. Lett. 1, 135 (1977).
    [CrossRef] [PubMed]
  3. T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
    [CrossRef]
  4. R. Meynart, “Instantaneous Velocity Field Measurements in Unsteady Gas Flow by Speckle Velocimetry,” Appl. Opt. 22, 535 (1983).
    [CrossRef] [PubMed]
  5. R. J. Adrian, “Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow: Speckle Velocimetry vs Particle Image Velocimetry,” Appl. Opt 23, 1690 (1984).
    [CrossRef] [PubMed]
  6. C. J. D. Pickering, N. A. Halliwell, “Laser Speckle Photography and Particle Image Velocimetry: Photographic Film Noise,” Appl. Opt. 23, 2961 (1984).
    [CrossRef] [PubMed]
  7. W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Annu. Rev. Fluid Mech. 16, 223 (1984).
    [CrossRef]
  8. F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).
  9. L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).
  10. T. B. Benjamin, A. T. Ellis, “The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221 (1966).
    [CrossRef]
  11. W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).
  12. J. R. Blake, D. C. Gibson, “Cavitation Bubbles Near Boundaries,” Annu. Rev. Fluid Mech. 19, 99 (1987).
    [CrossRef]
  13. Y. Tomita, A. Shima, “Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” J. Fluid Mech. 169, 535 (1986).
    [CrossRef]
  14. W. Lauterborn, W. Hentschel, “Cavitation Bubble Dynamics Studied by High Speed Photography and Holography: Part One,” Ultrasonics 23, 260 (1985).
    [CrossRef]
  15. M. S. Plesset, R. B. Chapman, “Collapse of an Initially Spherical Vapour Cavity in the Neighborhood of a Solid Boundary,” J. Fluid Mech. 47, 283 (1971).
    [CrossRef]
  16. J. R. Blake, B. B. Taib, G. Doherty, “Transient Cavities Near Boundaries. Part 1. Rigid Boundary,” J. Fluid Mech. 170, 479 (1986).
    [CrossRef]
  17. R. J. Adrian, “Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry,” Appl. Opt. 25, 3855 (1986).
    [CrossRef] [PubMed]
  18. L. Lourenco, “Theory and Applications of Particle Image Displacement Velocimetry,” in Lecture Series 1986–09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 1.
  19. C. S. Moraitis, M. L. Riethmüller, J. M. Buchlin, N. Selfslagh, “Computer Processing of Fringe Patterns for Laser Speckle Velocimetry,” in Lecture Series 1986-09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 53.
  20. K. A. Marko, L. Rimai, “Video Recording and Quantitative Analysis of Seed Particle Track Images in Unsteady Flows,” Appl. Opt. 24, 3666 (1985).
    [CrossRef] [PubMed]
  21. R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
    [CrossRef]
  22. T. Kobayashi, T. Saga, S. Segawa, “Some Considerations on Automated Image Processing of Pathline Photographs,” in Proceedings, Fourth International Symposium on Flow Visualization, Paris (1986), paper B3.1.
  23. P. E. Dimotakis, F. D. Debussy, M. M. Koochesfahani, “Particle Streak Velocity Field Measurements in a Two Dimensional Mixing Layer,” Phys. Fluids 24, 955 (1981).
    [CrossRef]
  24. K. Imaichi, K. Ohmi, “Quantitative Flow Analysis by Image Processing of Flow Visualization Photographs,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 301.
  25. T. Kobayashi, T. Ishihara, T. Sasaki, “Automatic Analysis of Photographs of Trace Particles by Microcomputer System,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 231.
  26. W. Lauterborn, H. Bolle, “Experimental Investigations of Cavitation Bubble Collapse in the Neighborhood of a Solid boundary,” J. Fluid Mech. 72, 391 (1975).
    [CrossRef]
  27. Chemische Werke Hülls, D-4370 Marl, Federal Republic of Germany, Data Sheet “Vestamid X 3694” (Hüls, 1983).
  28. R. J. Adrian, C. S. Yao, “Pulsed Laser Technique Application to Liquid and Gaseous Flows and the Scattering Power of Seed Materials,” Appl. Opt. 24, 44 (1985).
    [CrossRef] [PubMed]
  29. J. R. Blake, U. Wollongong, Australia; personal communication.

1987 (1)

J. R. Blake, D. C. Gibson, “Cavitation Bubbles Near Boundaries,” Annu. Rev. Fluid Mech. 19, 99 (1987).
[CrossRef]

1986 (3)

Y. Tomita, A. Shima, “Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” J. Fluid Mech. 169, 535 (1986).
[CrossRef]

J. R. Blake, B. B. Taib, G. Doherty, “Transient Cavities Near Boundaries. Part 1. Rigid Boundary,” J. Fluid Mech. 170, 479 (1986).
[CrossRef]

R. J. Adrian, “Image Shifting Technique to Resolve Directional Ambiguity in Double-Pulsed Velocimetry,” Appl. Opt. 25, 3855 (1986).
[CrossRef] [PubMed]

1985 (3)

1984 (3)

R. J. Adrian, “Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow: Speckle Velocimetry vs Particle Image Velocimetry,” Appl. Opt 23, 1690 (1984).
[CrossRef] [PubMed]

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Annu. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

C. J. D. Pickering, N. A. Halliwell, “Laser Speckle Photography and Particle Image Velocimetry: Photographic Film Noise,” Appl. Opt. 23, 2961 (1984).
[CrossRef] [PubMed]

1983 (1)

1981 (1)

P. E. Dimotakis, F. D. Debussy, M. M. Koochesfahani, “Particle Streak Velocity Field Measurements in a Two Dimensional Mixing Layer,” Phys. Fluids 24, 955 (1981).
[CrossRef]

1977 (4)

D. B. Barker, M. E. Fourney, “Measuring Fluid Velocities with Speckle Patterns,” Opt. Lett. 1, 135 (1977).
[CrossRef] [PubMed]

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

R. Grousson, S. Mallick, “Study of Flow Pattern in a Fluid by Scattered Laser Light,” Appl. Opt. 16, 2334 (1977).
[CrossRef] [PubMed]

1975 (1)

W. Lauterborn, H. Bolle, “Experimental Investigations of Cavitation Bubble Collapse in the Neighborhood of a Solid boundary,” J. Fluid Mech. 72, 391 (1975).
[CrossRef]

1974 (1)

W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).

1971 (1)

M. S. Plesset, R. B. Chapman, “Collapse of an Initially Spherical Vapour Cavity in the Neighborhood of a Solid Boundary,” J. Fluid Mech. 47, 283 (1971).
[CrossRef]

1966 (1)

T. B. Benjamin, A. T. Ellis, “The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221 (1966).
[CrossRef]

Adrian, R. J.

Barker, D. B.

Benjamin, T. B.

T. B. Benjamin, A. T. Ellis, “The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221 (1966).
[CrossRef]

Blake, J. R.

J. R. Blake, D. C. Gibson, “Cavitation Bubbles Near Boundaries,” Annu. Rev. Fluid Mech. 19, 99 (1987).
[CrossRef]

J. R. Blake, B. B. Taib, G. Doherty, “Transient Cavities Near Boundaries. Part 1. Rigid Boundary,” J. Fluid Mech. 170, 479 (1986).
[CrossRef]

J. R. Blake, U. Wollongong, Australia; personal communication.

Bolle, H.

W. Lauterborn, H. Bolle, “Experimental Investigations of Cavitation Bubble Collapse in the Neighborhood of a Solid boundary,” J. Fluid Mech. 72, 391 (1975).
[CrossRef]

Buchlin, J. M.

C. S. Moraitis, M. L. Riethmüller, J. M. Buchlin, N. Selfslagh, “Computer Processing of Fringe Patterns for Laser Speckle Velocimetry,” in Lecture Series 1986-09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 53.

Chapman, R. B.

M. S. Plesset, R. B. Chapman, “Collapse of an Initially Spherical Vapour Cavity in the Neighborhood of a Solid Boundary,” J. Fluid Mech. 47, 283 (1971).
[CrossRef]

Debussy, F. D.

P. E. Dimotakis, F. D. Debussy, M. M. Koochesfahani, “Particle Streak Velocity Field Measurements in a Two Dimensional Mixing Layer,” Phys. Fluids 24, 955 (1981).
[CrossRef]

Dimotakis, P. E.

P. E. Dimotakis, F. D. Debussy, M. M. Koochesfahani, “Particle Streak Velocity Field Measurements in a Two Dimensional Mixing Layer,” Phys. Fluids 24, 955 (1981).
[CrossRef]

Doherty, G.

J. R. Blake, B. B. Taib, G. Doherty, “Transient Cavities Near Boundaries. Part 1. Rigid Boundary,” J. Fluid Mech. 170, 479 (1986).
[CrossRef]

Drain, L. E.

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

Dudderar, T. D.

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

Durst, F.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Elkins, R. E.

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

Ellis, A. T.

T. B. Benjamin, A. T. Ellis, “The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221 (1966).
[CrossRef]

Fourney, M. E.

Gibson, D. C.

J. R. Blake, D. C. Gibson, “Cavitation Bubbles Near Boundaries,” Annu. Rev. Fluid Mech. 19, 99 (1987).
[CrossRef]

Grousson, R.

Halliwell, N. A.

Hentschel, W.

W. Lauterborn, W. Hentschel, “Cavitation Bubble Dynamics Studied by High Speed Photography and Holography: Part One,” Ultrasonics 23, 260 (1985).
[CrossRef]

Imaichi, K.

K. Imaichi, K. Ohmi, “Quantitative Flow Analysis by Image Processing of Flow Visualization Photographs,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 301.

Ishihara, T.

T. Kobayashi, T. Ishihara, T. Sasaki, “Automatic Analysis of Photographs of Trace Particles by Microcomputer System,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 231.

Jackman, G. R.

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

Johnson, R. R.

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

Kobayashi, T.

T. Kobayashi, T. Saga, S. Segawa, “Some Considerations on Automated Image Processing of Pathline Photographs,” in Proceedings, Fourth International Symposium on Flow Visualization, Paris (1986), paper B3.1.

T. Kobayashi, T. Ishihara, T. Sasaki, “Automatic Analysis of Photographs of Trace Particles by Microcomputer System,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 231.

Koochesfahani, M. M.

P. E. Dimotakis, F. D. Debussy, M. M. Koochesfahani, “Particle Streak Velocity Field Measurements in a Two Dimensional Mixing Layer,” Phys. Fluids 24, 955 (1981).
[CrossRef]

Lauterborn, W.

W. Lauterborn, W. Hentschel, “Cavitation Bubble Dynamics Studied by High Speed Photography and Holography: Part One,” Ultrasonics 23, 260 (1985).
[CrossRef]

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Annu. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

W. Lauterborn, H. Bolle, “Experimental Investigations of Cavitation Bubble Collapse in the Neighborhood of a Solid boundary,” J. Fluid Mech. 72, 391 (1975).
[CrossRef]

W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).

Lindgren, E. R.

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

Lourenco, L.

L. Lourenco, “Theory and Applications of Particle Image Displacement Velocimetry,” in Lecture Series 1986–09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 1.

Mallick, S.

Marko, K. A.

Melling, A.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Meynart, R.

Moraitis, C. S.

C. S. Moraitis, M. L. Riethmüller, J. M. Buchlin, N. Selfslagh, “Computer Processing of Fringe Patterns for Laser Speckle Velocimetry,” in Lecture Series 1986-09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 53.

Ohmi, K.

K. Imaichi, K. Ohmi, “Quantitative Flow Analysis by Image Processing of Flow Visualization Photographs,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 301.

Pickering, C. J. D.

Plesset, M. S.

M. S. Plesset, R. B. Chapman, “Collapse of an Initially Spherical Vapour Cavity in the Neighborhood of a Solid Boundary,” J. Fluid Mech. 47, 283 (1971).
[CrossRef]

Riethmüller, M. L.

C. S. Moraitis, M. L. Riethmüller, J. M. Buchlin, N. Selfslagh, “Computer Processing of Fringe Patterns for Laser Speckle Velocimetry,” in Lecture Series 1986-09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 53.

Rimai, L.

Saga, T.

T. Kobayashi, T. Saga, S. Segawa, “Some Considerations on Automated Image Processing of Pathline Photographs,” in Proceedings, Fourth International Symposium on Flow Visualization, Paris (1986), paper B3.1.

Sasaki, T.

T. Kobayashi, T. Ishihara, T. Sasaki, “Automatic Analysis of Photographs of Trace Particles by Microcomputer System,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 231.

Segawa, S.

T. Kobayashi, T. Saga, S. Segawa, “Some Considerations on Automated Image Processing of Pathline Photographs,” in Proceedings, Fourth International Symposium on Flow Visualization, Paris (1986), paper B3.1.

Selfslagh, N.

C. S. Moraitis, M. L. Riethmüller, J. M. Buchlin, N. Selfslagh, “Computer Processing of Fringe Patterns for Laser Speckle Velocimetry,” in Lecture Series 1986-09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 53.

Shima, A.

Y. Tomita, A. Shima, “Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” J. Fluid Mech. 169, 535 (1986).
[CrossRef]

Simpkins, P. G.

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

Taib, B. B.

J. R. Blake, B. B. Taib, G. Doherty, “Transient Cavities Near Boundaries. Part 1. Rigid Boundary,” J. Fluid Mech. 170, 479 (1986).
[CrossRef]

Tomita, Y.

Y. Tomita, A. Shima, “Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” J. Fluid Mech. 169, 535 (1986).
[CrossRef]

Vogel, A.

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Annu. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

Whitelaw, J. H.

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

Yao, C. S.

Yoo, J. K.

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

Acustica (1)

W. Lauterborn, “Kavitation durch Laserlicht,” Acustica 31, 51 (1974).

Annu. Rev. Fluid Mech. (2)

J. R. Blake, D. C. Gibson, “Cavitation Bubbles Near Boundaries,” Annu. Rev. Fluid Mech. 19, 99 (1987).
[CrossRef]

W. Lauterborn, A. Vogel, “Modern Optical Techniques in Fluid Mechanics,” Annu. Rev. Fluid Mech. 16, 223 (1984).
[CrossRef]

Appl. Opt (1)

R. J. Adrian, “Scattering Particle Characteristics and Their Effect on Pulsed Laser Measurements of Fluid Flow: Speckle Velocimetry vs Particle Image Velocimetry,” Appl. Opt 23, 1690 (1984).
[CrossRef] [PubMed]

Appl. Opt. (6)

J. Fluid Mech. (4)

W. Lauterborn, H. Bolle, “Experimental Investigations of Cavitation Bubble Collapse in the Neighborhood of a Solid boundary,” J. Fluid Mech. 72, 391 (1975).
[CrossRef]

M. S. Plesset, R. B. Chapman, “Collapse of an Initially Spherical Vapour Cavity in the Neighborhood of a Solid Boundary,” J. Fluid Mech. 47, 283 (1971).
[CrossRef]

J. R. Blake, B. B. Taib, G. Doherty, “Transient Cavities Near Boundaries. Part 1. Rigid Boundary,” J. Fluid Mech. 170, 479 (1986).
[CrossRef]

Y. Tomita, A. Shima, “Mechanisms of Impulsive Pressure Generation and Damage Pit Formation by Bubble Collapse,” J. Fluid Mech. 169, 535 (1986).
[CrossRef]

Nature London (1)

T. D. Dudderar, P. G. Simpkins, “Laser Speckle Photography in a Fluid Medium,” Nature London 270, 45 (1977).
[CrossRef]

Opt. Lett. (1)

Philos. Trans. R. Soc. London Ser. A (1)

T. B. Benjamin, A. T. Ellis, “The Collapse of Cavitation Bubbles and the Pressures Thereby Produced Against Solid Boundaries,” Philos. Trans. R. Soc. London Ser. A 260, 221 (1966).
[CrossRef]

Phys. Fluids (1)

P. E. Dimotakis, F. D. Debussy, M. M. Koochesfahani, “Particle Streak Velocity Field Measurements in a Two Dimensional Mixing Layer,” Phys. Fluids 24, 955 (1981).
[CrossRef]

Rev. Sci. Instrum. (1)

R. E. Elkins, G. R. Jackman, R. R. Johnson, E. R. Lindgren, J. K. Yoo, “Evaluation of Stereoscopic Trace Particle Records of Turbulent Flow Fields,” Rev. Sci. Instrum. 48, 738 (1977).
[CrossRef]

Ultrasonics (1)

W. Lauterborn, W. Hentschel, “Cavitation Bubble Dynamics Studied by High Speed Photography and Holography: Part One,” Ultrasonics 23, 260 (1985).
[CrossRef]

Other (9)

F. Durst, A. Melling, J. H. Whitelaw, Principles and Practice of Laser-Doppler Anemometry (Academic, London, 1976).

L. E. Drain, The Laser Doppler Technique (Wiley, New York, 1980).

T. Kobayashi, T. Saga, S. Segawa, “Some Considerations on Automated Image Processing of Pathline Photographs,” in Proceedings, Fourth International Symposium on Flow Visualization, Paris (1986), paper B3.1.

L. Lourenco, “Theory and Applications of Particle Image Displacement Velocimetry,” in Lecture Series 1986–09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 1.

C. S. Moraitis, M. L. Riethmüller, J. M. Buchlin, N. Selfslagh, “Computer Processing of Fringe Patterns for Laser Speckle Velocimetry,” in Lecture Series 1986-09, von Karman Institute for Fluid Dynamics (Brussels, 1986), p. 53.

K. Imaichi, K. Ohmi, “Quantitative Flow Analysis by Image Processing of Flow Visualization Photographs,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 301.

T. Kobayashi, T. Ishihara, T. Sasaki, “Automatic Analysis of Photographs of Trace Particles by Microcomputer System,” in Flow Visualization III, W. J. Yang, Ed. (Hemisphere, Washington, 1985), p. 231.

Chemische Werke Hülls, D-4370 Marl, Federal Republic of Germany, Data Sheet “Vestamid X 3694” (Hüls, 1983).

J. R. Blake, U. Wollongong, Australia; personal communication.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Basic scheme for the recording of photographs for particle image velocimetry (PIV).

Fig. 2
Fig. 2

Experimental arrangement for time-resolved PIV of the flow around laser-produced cavitation bubbles.

Fig. 3
Fig. 3

Shape of the light pulses from the acoustooptic deflector (bottom) and the corresponding driving signal (top) with a duration of (a) 2 μs, (b) 1 μs, and (c) 0.5 μs. The pulse energy is 6 μJ in (a) 3 μJ in (b), and 1.5 μJ in (c).

Fig. 4
Fig. 4

Simultaneous recording of the acoustic signal of the laser-produced cavitation bubble (top) and the driving signal for the acoustooptic modulator (bottom). The first peak of the acoustic signal represents the shock wave emitted during optical breakdown, and the following peaks indicate the first and second bubble collapse.

Fig. 5
Fig. 5

PIV photograph of a cavitation bubble close to a solid boundary (hatched area) 7 μs before collapse, taken from a series with a 5-kHz framing rate, magnification of M = 1, and film velocity of 50 m/s. The maximum bubble radius is 1.8 mm and γ = 2.4.

Fig. 6
Fig. 6

Evolution of the velocity field around a laser-generated cavitation bubble close to a solid boundary. Subsequent diagrams are arranged in columns. The first collapse occurs between the fourth and the fifth picture, the second between the fifth and the sixth diagram, γ = 1.9, Rmax = 2.5 mm. Time t is normalized by Rayleigh’s collapse time Tc of a spherical bubble: T = t/Tc.

Fig. 7
Fig. 7

Velocity field in the vicinity of a collapsing cavitation bubble at times (a) T = 1.85 and (b) T = 2.08. The velocity values are given in m/s. The diagrams are taken from two different series, (b) Evaluation of the photograph shown in Fig. 5.

Fig. 8
Fig. 8

(a) Experimentally obtained path line portrait of the flow around a collapsing cavitation bubble at γ = 2.4, Bubble shape 0 represents the bubble at maximum expansion, shape 1 belongs to T = 1.85, and shape 2 to T = 2.08. (b) Path line portrait for γ = 2.4 calculated numerically for several points on the wall of the collapsing bubble. Plot supplied by J. R. Blake. The dot in (a) and the small circle in (b) indicate the location of bubble formation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

υ f > M υ max
υ max = 3 5 M υ f .
ν p = υ f height of picture = 1 M · υ f height of object .
γ = l R max .

Metrics