Abstract

The near- and far-field performance of three practical positive branch unstable resonator designs was compared for a commercial excimer laser operating on ArF and KrF. Atmospheric attenuation at 193 and 248 nm was measured.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Siegman, “Unstable Optical Resonators,” Appl. Opt. 13, 353 (1974).
    [CrossRef] [PubMed]
  2. T. J. McKee, B. P. Stoicheff, S. C. Wallace, “Diffraction-Limited KrF and XeF Lasers with a Negative-Branch Unstable Resonator,” Appl. Phys. Lett. 30, 278 (1977).
    [CrossRef]
  3. D. L. Barker, T. R. Loree, “Improved Beam Quality in Double Discharge Excimer Lasers,” Appl. Opt. 16, 1792, (1977).
    [CrossRef] [PubMed]
  4. D. J. James, T. J. McKee, W. Skrlac, “High Magnification Unstable Resonator Excimer Laser,” IEEE J. Quantum Electron. QE-15, 335 (1979).
    [CrossRef]
  5. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), 331. For zero absorption, the peak etalon reflectivity Rp becomes Rp = (4r)/(l + r)2, where r is the surface reflectance. For an uncoated fused silica etalon, the peak reflectivity is 15.2% at 248 nm and 17.5% at 193 nm.
  6. Ref. 5, 161.
  7. B. K. Deka, P. E. Dyer, “Mode Control and Performance Studies of Pulsed Unstable Resonator HF/DF Laser,” IEEE J. Quantum Electron. QE-14, 661 (1978).
    [CrossRef]

1979 (1)

D. J. James, T. J. McKee, W. Skrlac, “High Magnification Unstable Resonator Excimer Laser,” IEEE J. Quantum Electron. QE-15, 335 (1979).
[CrossRef]

1978 (1)

B. K. Deka, P. E. Dyer, “Mode Control and Performance Studies of Pulsed Unstable Resonator HF/DF Laser,” IEEE J. Quantum Electron. QE-14, 661 (1978).
[CrossRef]

1977 (2)

T. J. McKee, B. P. Stoicheff, S. C. Wallace, “Diffraction-Limited KrF and XeF Lasers with a Negative-Branch Unstable Resonator,” Appl. Phys. Lett. 30, 278 (1977).
[CrossRef]

D. L. Barker, T. R. Loree, “Improved Beam Quality in Double Discharge Excimer Lasers,” Appl. Opt. 16, 1792, (1977).
[CrossRef] [PubMed]

1974 (1)

Barker, D. L.

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), 331. For zero absorption, the peak etalon reflectivity Rp becomes Rp = (4r)/(l + r)2, where r is the surface reflectance. For an uncoated fused silica etalon, the peak reflectivity is 15.2% at 248 nm and 17.5% at 193 nm.

Deka, B. K.

B. K. Deka, P. E. Dyer, “Mode Control and Performance Studies of Pulsed Unstable Resonator HF/DF Laser,” IEEE J. Quantum Electron. QE-14, 661 (1978).
[CrossRef]

Dyer, P. E.

B. K. Deka, P. E. Dyer, “Mode Control and Performance Studies of Pulsed Unstable Resonator HF/DF Laser,” IEEE J. Quantum Electron. QE-14, 661 (1978).
[CrossRef]

James, D. J.

D. J. James, T. J. McKee, W. Skrlac, “High Magnification Unstable Resonator Excimer Laser,” IEEE J. Quantum Electron. QE-15, 335 (1979).
[CrossRef]

Loree, T. R.

McKee, T. J.

D. J. James, T. J. McKee, W. Skrlac, “High Magnification Unstable Resonator Excimer Laser,” IEEE J. Quantum Electron. QE-15, 335 (1979).
[CrossRef]

T. J. McKee, B. P. Stoicheff, S. C. Wallace, “Diffraction-Limited KrF and XeF Lasers with a Negative-Branch Unstable Resonator,” Appl. Phys. Lett. 30, 278 (1977).
[CrossRef]

Siegman, A. E.

Skrlac, W.

D. J. James, T. J. McKee, W. Skrlac, “High Magnification Unstable Resonator Excimer Laser,” IEEE J. Quantum Electron. QE-15, 335 (1979).
[CrossRef]

Stoicheff, B. P.

T. J. McKee, B. P. Stoicheff, S. C. Wallace, “Diffraction-Limited KrF and XeF Lasers with a Negative-Branch Unstable Resonator,” Appl. Phys. Lett. 30, 278 (1977).
[CrossRef]

Wallace, S. C.

T. J. McKee, B. P. Stoicheff, S. C. Wallace, “Diffraction-Limited KrF and XeF Lasers with a Negative-Branch Unstable Resonator,” Appl. Phys. Lett. 30, 278 (1977).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), 331. For zero absorption, the peak etalon reflectivity Rp becomes Rp = (4r)/(l + r)2, where r is the surface reflectance. For an uncoated fused silica etalon, the peak reflectivity is 15.2% at 248 nm and 17.5% at 193 nm.

Appl. Opt. (2)

Appl. Phys. Lett. (1)

T. J. McKee, B. P. Stoicheff, S. C. Wallace, “Diffraction-Limited KrF and XeF Lasers with a Negative-Branch Unstable Resonator,” Appl. Phys. Lett. 30, 278 (1977).
[CrossRef]

IEEE J. Quantum Electron. (2)

B. K. Deka, P. E. Dyer, “Mode Control and Performance Studies of Pulsed Unstable Resonator HF/DF Laser,” IEEE J. Quantum Electron. QE-14, 661 (1978).
[CrossRef]

D. J. James, T. J. McKee, W. Skrlac, “High Magnification Unstable Resonator Excimer Laser,” IEEE J. Quantum Electron. QE-15, 335 (1979).
[CrossRef]

Other (2)

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), 331. For zero absorption, the peak etalon reflectivity Rp becomes Rp = (4r)/(l + r)2, where r is the surface reflectance. For an uncoated fused silica etalon, the peak reflectivity is 15.2% at 248 nm and 17.5% at 193 nm.

Ref. 5, 161.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the three positive branch unstable resonator cavities studied, including representation of laser output beam at the right. (A) on-axis reflecting spot, (B) off-axis reflecting spot, (C) confocal etalon output coupler.

Fig. 2
Fig. 2

Pulse energy contained within various subtended divergence angles for KrF with resonator magnifications 5, 10, and 25 for resonator case B.

Fig. 3
Fig. 3

Pulse energy contained within various subtended divergence angles for KrF with resonator magnification 10 for resonator cases A, B, and C.

Fig. 4
Fig. 4

Pulse energy contained within various subtended divergence angles for ArF within resonator magnifications 5, 10, and 25 for resonator case B.

Fig. 5
Fig. 5

Pulse energy contained within various subtended divergence angles for ArF with resonator magnification 10 for resonator cases A, B, and C.

Fig. 6
Fig. 6

Optical temporal pulse for KrF resonator case C with magnification 10 for the energy components within divergence angles 5 mrad (top), 1 mrad (center), and 0.3 mrad (bottom). Horizontal scale 5 ns/div; vertical scale arbitrary.

Fig. 7
Fig. 7

Typical measurement of atmospheric attenuation of ArF.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f = n n 1 r ( r + d ) d .

Metrics