## Abstract

Now that ultrashort laser pulses can be used in holography, the temporal and spatial resolution approach the same order of magnitude. In that case the limited speed of light sometimes causes large measuring errors if correction methods are not introduced. Therefore, we want to revive the Minkowski diagram, which was invented in 1908 to visualize relativistic relations between time and space. We show how this diagram in a modified form can be used to derive both the static holodiagram, used for conventional holography, including ultrahigh-speed recordings of wavefronts, and a dynamic holodiagram used for studying the apparent distortions of objects recorded at relativistic speeds.

© 1988 Optical Society of America

Full Article |

PDF Article
### Equations (12)

Equations on this page are rendered with MathJax. Learn more.

(1)
$$k=\frac{1}{\text{cos}\alpha}=\frac{g}{h}=\frac{0.5{D}_{x}}{0.5{D}_{y}}=e.$$
(2)
$$q=\frac{1}{\text{cos}\alpha}=\frac{g}{h}=\frac{0.5{D}_{x}}{0.5{D}_{y}}=e=\frac{g}{\sqrt{{g}^{2}-{f}^{2}}}=\frac{1}{\sqrt{1-{\left(\frac{\upsilon}{c}\right)}^{2}}}.$$
(3)
$$k=\frac{1}{\text{cos}\alpha},$$
(4)
$$q=\text{the}\phantom{\rule{0.2em}{0ex}}\text{distance}\phantom{\rule{0.2em}{0ex}}BG\phantom{\rule{0.2em}{0ex}}\text{divided}\phantom{\rule{0.2em}{0ex}}\text{by}\phantom{\rule{0.2em}{0ex}}\text{the}\phantom{\rule{0.2em}{0ex}}\text{distance}\phantom{\rule{0.2em}{0ex}}BK,$$
(5)
$$q=\frac{1-\frac{\upsilon}{c}\phantom{\rule{0.2em}{0ex}}\text{cos}\gamma}{\sqrt{1-{\left(\frac{\upsilon}{c}\right)}^{2}}}.$$
(6)
$$s=k\phantom{\rule{0.2em}{0ex}}0.5ct.$$
(7)
$${t}_{true}={L}_{app}/k\phantom{\rule{0.2em}{0ex}}0.5c.$$
(8)
$${\upsilon}_{app}=k\phantom{\rule{0.2em}{0ex}}0.5c.$$
(9)
$${L}_{true}={L}_{app}\phantom{\rule{0.2em}{0ex}}0.5k.$$
(10)
$${L}_{app}=\frac{1}{q}\phantom{\rule{0.2em}{0ex}}{L}_{true}.$$
(11)
$${\lambda}_{app}=q{\lambda}_{true}.$$
(12)
$${L}_{app}=\frac{1}{q}{L}_{true}.$$