Abstract

The photothermal deflection spectroscopy method is employed in thermal diffusivity measurements of solids. Thermal diffusivity at room temperature in standard materials such as Poco-graphite and S.S. 1.4970 stabilized austenitic steel is measured and compared with the tabulated values.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
    [CrossRef] [PubMed]
  2. N. M. Amer, “Characterization of the Optical and Thermal Properties of Matter by Photothermal Technique,” Ing. Nucl. 3, 35 (1985).
  3. G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
    [CrossRef]
  4. D. L. Balageas, “Mesure de la diffusivité thermique. Application aux moteriaux cervmiques,” Ing. Nucl. 3, 15 (1985).
  5. A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 185, 420 (1977).

1987 (1)

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

1985 (2)

D. L. Balageas, “Mesure de la diffusivité thermique. Application aux moteriaux cervmiques,” Ing. Nucl. 3, 15 (1985).

N. M. Amer, “Characterization of the Optical and Thermal Properties of Matter by Photothermal Technique,” Ing. Nucl. 3, 35 (1985).

1981 (1)

1977 (1)

A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 185, 420 (1977).

Amer, N. M.

N. M. Amer, “Characterization of the Optical and Thermal Properties of Matter by Photothermal Technique,” Ing. Nucl. 3, 35 (1985).

W. B. Jackson, N. M. Amer, A. C. Boccara, D. Fournier, “Photothermal Deflection Spectroscopy and Detection,” Appl. Opt. 20, 1333 (1981).
[CrossRef] [PubMed]

Balageas, D. L.

D. L. Balageas, “Mesure de la diffusivité thermique. Application aux moteriaux cervmiques,” Ing. Nucl. 3, 15 (1985).

Bertolotti, M.

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

Boccara, A. C.

Degiovanni, A.

A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 185, 420 (1977).

Ferrari, A.

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

Fournier, D.

Jackson, W. B.

Riccardiello, F. G.

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

Sibilia, C.

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

Suber, G.

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

Appl. Opt. (1)

Ing. Nucl. (2)

N. M. Amer, “Characterization of the Optical and Thermal Properties of Matter by Photothermal Technique,” Ing. Nucl. 3, 35 (1985).

D. L. Balageas, “Mesure de la diffusivité thermique. Application aux moteriaux cervmiques,” Ing. Nucl. 3, 15 (1985).

J. Therm. Anal. (1)

G. Suber, M. Bertolotti, C. Sibilia, A. Ferrari, F. G. Riccardiello, “Transverse Photothermal Deflection Spectroscopy (PDS) Applied to Thermal Diffusivity Measurements,” J. Therm. Anal. 32, 1039 (1987).
[CrossRef]

Rev. Gen. Therm. (1)

A. Degiovanni, “Diffusivité et méthode flash,” Rev. Gen. Therm. 185, 420 (1977).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Transverse photothermal deflection spectroscopy scheme.

Fig. 2
Fig. 2

The y displacement between pump and probe beams.

Fig. 3
Fig. 3

Experimental setup.

Fig. 4
Fig. 4

From the complete theory: (a) signal amplitude against y; (b) signal phase against y.

Fig. 5
Fig. 5

Amplitude signal of 64.3% total density γ-LiAlO sample: continuous line, theory, stars, experimental points.

Fig. 6
Fig. 6

Comparison between complete theory (continuous line) and approximated theory (dashed line).

Fig. 7
Fig. 7

Comparison between approximated theory (continuous line) and experimental values for Poco-graphite samples.

Fig. 8
Fig. 8

Continuous line: inphase signal calculated with the approximated theory on S.S. 1.4970 stabilized austenitic steel; the + indicates the experimental intersection point.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ϕ = 1 n 0 d n d T path T ( r , t ) d s ,
ϕ = 1 2 exp ( i ω t ) n 0 d n d T + d x 0 + δ J 0 ( δ x 2 + y 2 ) β 0 E ( δ ) × exp ( z 0 β 0 ) d δ + c . c .,
E ( δ ) = A ( δ ) + B ( δ ) + Γ ( δ ) , A ( δ ) = [ ( 1 g ) ( g h ) exp ( α l ) + ( g + h ) ( 1 + g ) exp ( β 1 l ) ] Γ ( δ ) / H ( δ ) , B ( δ ) = [ ( 1 + g ) ( g h ) exp ( α l ) + ( g + h ) ( 1 g ) exp ( β 1 l ) ] Γ ( δ ) / H ( δ ) , H ( δ ) = [ ( 1 + g ) 2 exp ( β 1 l ) ( 1 g ) 2 exp ( β 1 l ) ] , Γ ( δ ) = P α exp [ ( δ a ) 2 / 8 ] / ( π 2 k 1 ) ( β 1 2 α 2 ) , β j 2 = δ 2 + i ω / χ j j = 0 , 1 , g = k 0 β 0 / k 1 β 1 , h = α / β 1 ,
Δ V / V = ( 4 π w 0 n 0 / 2 π λ ) ϕ ,
Δ V / V = ρ cos ( ω t + ϑ ) ,
a = 200 μ m , χ 1 = 0 . 670 cm 2 / s , ν = 430 Hz , k = 1 . 24 W / ( cm K ) , P = 50 mW , α = 100 cm 1 , w 0 = 10 μ m , R = 0 . 1 .
ϕ = ϕ 0 exp ( y / l T ) cos ( ω t y / l T ) .
χ 1 = 2 ω π 2 y 0 2 ,

Metrics