Abstract

The acoustooptic time-and-space integrating approach to real-time synthetic aperture radar (SAR) processing is reviewed, and novel hybrid optical/electronic techniques, which generalize the basic architecture, are described. The generalized architecture is programmable and has the ability to compensate continuously for range migration changes in the parameters of the radar/target geometry and anomalous platform motion. The new architecture is applicable to the spotlight mode of SAR, particularly for applications in which real-time onboard processing is required.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cutrona et al., “On the Application of Coherent Optical Techniques to Synthetic Aperture Radar,” Proc. IEEE 54, 1026 (1966).
    [CrossRef]
  2. C. Sherwin, J. Ruina, D. Rawcliffe, “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. Mil. Electron. MIL-6, 111 (1962).
    [CrossRef]
  3. L. Cutrona, G. Hall, “A Comparison of Techniques for Achieving Fine Azimuth Resolution,” IRE Trans. Mil. Electron. MIL-6, 119 (1962).
    [CrossRef]
  4. D. Psaltis, K. Wagner, “Real-time Optical Synthetic Aperture Radar (SAR) Processor,” Opt. Eng. 21, 822 (1982).
    [CrossRef]
  5. C. C. Aleksoff et al., “Optical Hybrid Backprojection Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 000 (Apr.1983).
  6. D. Psaltis, M. Haney, K. Wagner, “Real-time Synthetic Aperture Radar Processing,” in Proceedings, NASA Optical Information Processing Conference (Aug.1983), p. 199.
  7. M. Haney, D. Psaltis, “Acoustooptic Techniques for Real-time SAR Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 545, (Apr.1985).
  8. D. Psaltis, M. Haney, “Real-time Synthetic Aperture Radar Processors,” in Optical Signal Processing, J. Horner, Ed. (Academic, New York, 1987).
  9. D. A. Ausherman et al., “Developments in Radar Imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
    [CrossRef]
  10. D. C. Munson et al., “A Tomographic Formulation of Spotlight-mode Synthetic Aperture Radar,” Proc. IEEE 7, 987 (1983).
  11. K. T. Stalker et al., “Comparison of Real-time Acousto-optic SAR Processor Architectures,” Proc. Soc. Photo-Opt. Instrum. Eng. 827, (1985).

1985

M. Haney, D. Psaltis, “Acoustooptic Techniques for Real-time SAR Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 545, (Apr.1985).

K. T. Stalker et al., “Comparison of Real-time Acousto-optic SAR Processor Architectures,” Proc. Soc. Photo-Opt. Instrum. Eng. 827, (1985).

1984

D. A. Ausherman et al., “Developments in Radar Imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

1983

D. C. Munson et al., “A Tomographic Formulation of Spotlight-mode Synthetic Aperture Radar,” Proc. IEEE 7, 987 (1983).

C. C. Aleksoff et al., “Optical Hybrid Backprojection Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 000 (Apr.1983).

1982

D. Psaltis, K. Wagner, “Real-time Optical Synthetic Aperture Radar (SAR) Processor,” Opt. Eng. 21, 822 (1982).
[CrossRef]

1966

L. Cutrona et al., “On the Application of Coherent Optical Techniques to Synthetic Aperture Radar,” Proc. IEEE 54, 1026 (1966).
[CrossRef]

1962

C. Sherwin, J. Ruina, D. Rawcliffe, “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. Mil. Electron. MIL-6, 111 (1962).
[CrossRef]

L. Cutrona, G. Hall, “A Comparison of Techniques for Achieving Fine Azimuth Resolution,” IRE Trans. Mil. Electron. MIL-6, 119 (1962).
[CrossRef]

Aleksoff, C. C.

C. C. Aleksoff et al., “Optical Hybrid Backprojection Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 000 (Apr.1983).

Ausherman, D. A.

D. A. Ausherman et al., “Developments in Radar Imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

Cutrona, L.

L. Cutrona et al., “On the Application of Coherent Optical Techniques to Synthetic Aperture Radar,” Proc. IEEE 54, 1026 (1966).
[CrossRef]

L. Cutrona, G. Hall, “A Comparison of Techniques for Achieving Fine Azimuth Resolution,” IRE Trans. Mil. Electron. MIL-6, 119 (1962).
[CrossRef]

Hall, G.

L. Cutrona, G. Hall, “A Comparison of Techniques for Achieving Fine Azimuth Resolution,” IRE Trans. Mil. Electron. MIL-6, 119 (1962).
[CrossRef]

Haney, M.

M. Haney, D. Psaltis, “Acoustooptic Techniques for Real-time SAR Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 545, (Apr.1985).

D. Psaltis, M. Haney, K. Wagner, “Real-time Synthetic Aperture Radar Processing,” in Proceedings, NASA Optical Information Processing Conference (Aug.1983), p. 199.

D. Psaltis, M. Haney, “Real-time Synthetic Aperture Radar Processors,” in Optical Signal Processing, J. Horner, Ed. (Academic, New York, 1987).

Munson, D. C.

D. C. Munson et al., “A Tomographic Formulation of Spotlight-mode Synthetic Aperture Radar,” Proc. IEEE 7, 987 (1983).

Psaltis, D.

M. Haney, D. Psaltis, “Acoustooptic Techniques for Real-time SAR Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 545, (Apr.1985).

D. Psaltis, K. Wagner, “Real-time Optical Synthetic Aperture Radar (SAR) Processor,” Opt. Eng. 21, 822 (1982).
[CrossRef]

D. Psaltis, M. Haney, “Real-time Synthetic Aperture Radar Processors,” in Optical Signal Processing, J. Horner, Ed. (Academic, New York, 1987).

D. Psaltis, M. Haney, K. Wagner, “Real-time Synthetic Aperture Radar Processing,” in Proceedings, NASA Optical Information Processing Conference (Aug.1983), p. 199.

Rawcliffe, D.

C. Sherwin, J. Ruina, D. Rawcliffe, “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. Mil. Electron. MIL-6, 111 (1962).
[CrossRef]

Ruina, J.

C. Sherwin, J. Ruina, D. Rawcliffe, “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. Mil. Electron. MIL-6, 111 (1962).
[CrossRef]

Sherwin, C.

C. Sherwin, J. Ruina, D. Rawcliffe, “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. Mil. Electron. MIL-6, 111 (1962).
[CrossRef]

Stalker, K. T.

K. T. Stalker et al., “Comparison of Real-time Acousto-optic SAR Processor Architectures,” Proc. Soc. Photo-Opt. Instrum. Eng. 827, (1985).

Wagner, K.

D. Psaltis, K. Wagner, “Real-time Optical Synthetic Aperture Radar (SAR) Processor,” Opt. Eng. 21, 822 (1982).
[CrossRef]

D. Psaltis, M. Haney, K. Wagner, “Real-time Synthetic Aperture Radar Processing,” in Proceedings, NASA Optical Information Processing Conference (Aug.1983), p. 199.

IEEE Trans. Aerosp. Electron. Syst.

D. A. Ausherman et al., “Developments in Radar Imaging,” IEEE Trans. Aerosp. Electron. Syst. AES-20, 323 (1984).
[CrossRef]

IRE Trans. Mil. Electron.

C. Sherwin, J. Ruina, D. Rawcliffe, “Some Early Developments in Synthetic Aperture Radar Systems,” IRE Trans. Mil. Electron. MIL-6, 111 (1962).
[CrossRef]

L. Cutrona, G. Hall, “A Comparison of Techniques for Achieving Fine Azimuth Resolution,” IRE Trans. Mil. Electron. MIL-6, 119 (1962).
[CrossRef]

Opt. Eng.

D. Psaltis, K. Wagner, “Real-time Optical Synthetic Aperture Radar (SAR) Processor,” Opt. Eng. 21, 822 (1982).
[CrossRef]

Proc. IEEE

D. C. Munson et al., “A Tomographic Formulation of Spotlight-mode Synthetic Aperture Radar,” Proc. IEEE 7, 987 (1983).

L. Cutrona et al., “On the Application of Coherent Optical Techniques to Synthetic Aperture Radar,” Proc. IEEE 54, 1026 (1966).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng.

K. T. Stalker et al., “Comparison of Real-time Acousto-optic SAR Processor Architectures,” Proc. Soc. Photo-Opt. Instrum. Eng. 827, (1985).

M. Haney, D. Psaltis, “Acoustooptic Techniques for Real-time SAR Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 545, (Apr.1985).

C. C. Aleksoff et al., “Optical Hybrid Backprojection Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 422, 000 (Apr.1983).

Other

D. Psaltis, M. Haney, K. Wagner, “Real-time Synthetic Aperture Radar Processing,” in Proceedings, NASA Optical Information Processing Conference (Aug.1983), p. 199.

D. Psaltis, M. Haney, “Real-time Synthetic Aperture Radar Processors,” in Optical Signal Processing, J. Horner, Ed. (Academic, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Synthetic aperture radar data collection geometry.

Fig. 2
Fig. 2

Space integrating acoustooptic range focusing technique.

Fig. 3
Fig. 3

Interferometric technique used to detect azimuth phase histories.

Fig. 4
Fig. 4

CCD output showing range-dimension signals: (a) range focused signal and uniform reference; (b) same as (a) but with relative phase adjusted for destructive interference.

Fig. 5
Fig. 5

Real-time acoustooptic SAR processor.

Fig. 6
Fig. 6

Example of a reference mask.

Fig. 7
Fig. 7

Isometric displays of real-time processor outputs for simulated point scatterer input: (a) with bias terms; (b) without bias terms.

Fig. 8
Fig. 8

Optical setup for the interferometric generation of the SAR azimuth filter.

Fig. 9
Fig. 9

Optical architecture for SAR imaging with the azimuth reference introduced through a second AO cell.

Fig. 10
Fig. 10

Output of the processor with an electronically generated azimuth reference filter.

Fig. 11
Fig. 11

Hybrid processor interfaces.

Fig. 12
Fig. 12

Spotlight mode SAR geometry.

Equations (30)

Equations on this page are rendered with MathJax. Learn more.

s ( t ) = n = 0 N rect [ t n T τ ] exp [ j π b ( t n T ) 2 ] exp ( j ω t ) ,
R ( t ) = [ x 0 2 + ( y 0 υ r t ) 2 ] 1 / 2 .
R ( t ) x 0 + ( y 0 υ r t ) 2 2 x 0 .
r ( t ) n = 0 N rect [ t 2 x 0 c n T τ ] × exp [ j π b ( t 2 x 0 c n T ) 2 ] exp [ j ω ( y 0 υ r n T ) 2 / x 0 c ] .
f ( t 1 , t 2 ) = rect ( t 1 2 x 0 c τ ) exp [ j b 1 ( t 2 x 0 c ) 2 ] × rect [ t 2 y 0 / υ r N T / 2 N T ] exp [ j b 2 x 0 ( t 2 y 0 / υ r ) 2 ] .
g ( x , y ) = t 2 f ( t 1 , t 2 ) h ( t 1 α x , t 2 β y , x 0 ) d t 1 ,
h ( t 1 , t 2 , x 0 ) = rect ( t 1 τ ) exp ( j b 1 t 1 2 ) × rect ( t 2 N T 2 N T ) exp ( j b 2 t 2 2 / x 0 ) ,
g ( x , y ) = t 2 = N T / 2 N T / 2 exp [ j b 2 x 0 ( t 2 β y ) 2 ] × τ / 2 + τ / 2 f ( t 1 , t 2 ) exp [ j b 1 ( t 1 α x ) 2 ] d t 1 .
t 1 ( x , y ) = 1 2 + 1 2 cos [ b 2 ( β y ) 2 / x ] .
I C C D ( x , y ) = t 2 ¯ N T / 2 N T / 2 I ( x , y + υ c t 2 , t 2 ) = t 2 ¯ N T / 2 N T / 2 I 0 ( x , t 2 ) t 1 ( x , y + υ c t 2 ) ,
t = 2 υ r T cos ( θ ) / c ,
ω d = υ r ω cos ( θ ) / c .
f r / a ( x , n ) = exp ( j b 3 x n 2 ) ,
r 0 ( n T ) = R 0 1 2 υ r n T cos θ 0 R 0 + ( υ r n T ) 2 R 0 2 .
r 0 ( n T ) R 0 υ r n T cos θ 0 + ( υ r n T sin θ 0 ) 2 2 R 0 .
r ( n , ρ , γ ) = R 0 + ρ υ r n T cos ( θ 0 + γ ) + ( υ r n T sin ( θ 0 + γ ) 2 2 ( r + ρ ) .
r ( n , ρ , γ ) R 0 + ρ υ r n T cos θ 0 + ( υ r n T sin ( θ 0 ) γ + ( υ r n T sin θ 0 ) 2 2 R 0 ( 1 ρ / R 0 ) + ( υ r n T ) 2 γ sin 2 θ 0 2 R 0 .
r 1 ( n , ρ , γ ) = ρ + γ υ r n T sin θ 0 + ( υ r n T sin θ 0 ) 2 2 R 0 .
r 2 ( n , ρ , γ ) = ρ + γ υ r n T sin θ 0 .
r 2 ( n , ρ , γ ) = ρ + ( γ R 0 ) θ ˙ n T .
r ¯ 2 ( n , x , y ) = x + θ ˙ y n T .
r ¯ ( n , x , y ) = x .
ϕ ( n , ρ , γ ) = 2 ω c r ( n , γ , ρ ) .
ϕ ( n , ρ , γ ) = 2 ω c [ δ υ r n T sin θ 0 + ( υ r n T sin θ 0 ) 2 2 R 0 ( 1 ρ / R 0 ) + ( υ r n T ) 2 γ sin 2 θ 0 2 R 0 ] .
ϕ ( n , ρ , γ ) ω R 0 C ( 1 ρ / R 0 ) [ υ r n T sin θ 0 + ( R 0 + ρ ) γ ] 2 .
Δ ϕ ( n , ρ , γ ) = ω C R 0 ( υ r n T sin θ 0 ) 2 ρ / R 0 .
ϕ eff ( n , ρ , γ ) ω R 0 C ( 1 2 ρ R 0 ) [ υ r n T sin θ 0 + ( R 0 + 2 ρ ) γ ] 2 .
ϕ ( n T , y ) = ω 0 C 1 2 c R 0 ( y + C 1 υ r n T sin θ 0 ) 2 .
ϕ CCD ( n T , y ) = ω 0 C 1 2 c R 0 ( y θ ˙ x n T + C 1 υ r n T sin θ 0 ) 2 .
ϕ CCD ( n T , ρ , γ ) ω 0 C R 0 ( 1 2 ρ R 0 ) [ υ r n T sin θ 0 + ( R 0 + ρ ) γ ] 2 .

Metrics