Abstract

Successful fabrication of high performance microlenses and microlens arrays using the titanium-indiffusion and proton-exchange technique has enabled realization of a variety of integrated electrooptic Bragg modulator modules in the LiNbO3 channel-planar composite waveguides of 0.2- × 1.0- × 1.8-cm3 substrate size. These integrated optic device modules have been utilized successfully to perform matrix–vector and matrix–matrix multiplications. Through the channel-waveguide and the linear microlens arrays, the very large channel capacities that are inherent in the diode laser and the optical fiber as well as the photodetector arrays may be conveniently exploited. Consequently, such integrated optic device modules should facilitate realization of multichannel optical computing as well as communication and rf signal processing systems.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. S. Tsai, “LiNbO3-Based Integrated-Optic Device Modules for Communication, Computing, and Signal Processing,” in Technical Digest, Conference On Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF1.
  2. C. M. Verber, “Integrated Optical Approaches to Numerical Optical Processing,” Proc. IEEE. 72, 949 (1984).
    [Crossref]
  3. C. S. Tsai, D. Y. Zang, P. Le, “Acousto-Optic Bragg Diffraction in a LiNbO3 Channel-Planar Composite Waveguide with Application to Optical Computing,” Appl. Phys. Lett. 47, 549 (1985).
    [Crossref]
  4. R. Arrathoon, E. R. Schroeder, L. D. Hutcheson, “Integrated Electro-Optic Bragg Processors for Digital Real-Time Signal Processing,” Opt. Lett. 10, 244 (1985).
    [Crossref] [PubMed]
  5. T. J. Bicknell, D. Psaltis, A. R. Tanguay, “Integrated-Optical Synthetic Aperture Radar Processor,” J. Opt. Soc. Am. A 2 (13), P8 (1985).
  6. D. Y. Zang, C. S. Tsai, “Signal-Mode Waveguide Microlenses and Microlens Array Fabrication in LiNbO3 Using Titanium Indiffused Proton Exchanged Technique,” Appl. Phys. Lett. 46, 703 (1985).
    [Crossref]
  7. D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Exchanged Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264 (1986).
    [Crossref] [PubMed]
  8. D. Y. Zang, P. Le, C. S. Tsai, “Integrated Electrooptic Bragg Modulator Modules for Optical Computing,” in Technical Digest, Topical Meeting On Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 193–196.
  9. H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
    [Crossref]
  10. M. Tur, J. W. Goodman, B. Moslchi, J. E. Bowers, J. H. Shaw, “Fiber-Optic Signal Processor with application to Matrix-Vector Multiplication and Lattice Filtering,” Opt. Lett. 7, 463 (1982).
    [Crossref] [PubMed]
  11. D. Casasent, “Acoustooptic Transducers in Iterative Optical Vector–Matrix Processors,” Appl. Opt. 21, 1859 (1982).
    [Crossref] [PubMed]
  12. R. A. Athale, W. C. Collins, P. D. Stilwell, “High Accuracy Matrix Multiplication with Outer Product Optical Processor,” Appl. Opt. 22, 368 (1983).
    [Crossref] [PubMed]

1986 (1)

1985 (4)

C. S. Tsai, D. Y. Zang, P. Le, “Acousto-Optic Bragg Diffraction in a LiNbO3 Channel-Planar Composite Waveguide with Application to Optical Computing,” Appl. Phys. Lett. 47, 549 (1985).
[Crossref]

R. Arrathoon, E. R. Schroeder, L. D. Hutcheson, “Integrated Electro-Optic Bragg Processors for Digital Real-Time Signal Processing,” Opt. Lett. 10, 244 (1985).
[Crossref] [PubMed]

T. J. Bicknell, D. Psaltis, A. R. Tanguay, “Integrated-Optical Synthetic Aperture Radar Processor,” J. Opt. Soc. Am. A 2 (13), P8 (1985).

D. Y. Zang, C. S. Tsai, “Signal-Mode Waveguide Microlenses and Microlens Array Fabrication in LiNbO3 Using Titanium Indiffused Proton Exchanged Technique,” Appl. Phys. Lett. 46, 703 (1985).
[Crossref]

1984 (1)

C. M. Verber, “Integrated Optical Approaches to Numerical Optical Processing,” Proc. IEEE. 72, 949 (1984).
[Crossref]

1983 (1)

1982 (2)

1981 (1)

H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
[Crossref]

Arrathoon, R.

Athale, R. A.

Bicknell, T. J.

T. J. Bicknell, D. Psaltis, A. R. Tanguay, “Integrated-Optical Synthetic Aperture Radar Processor,” J. Opt. Soc. Am. A 2 (13), P8 (1985).

Bowers, J. E.

Casasent, D.

Caulfield, H. J.

H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
[Crossref]

Collins, W. C.

Foster, M. J.

H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
[Crossref]

Goodman, J. W.

Horvita, S.

H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
[Crossref]

Hutcheson, L. D.

Le, P.

C. S. Tsai, D. Y. Zang, P. Le, “Acousto-Optic Bragg Diffraction in a LiNbO3 Channel-Planar Composite Waveguide with Application to Optical Computing,” Appl. Phys. Lett. 47, 549 (1985).
[Crossref]

D. Y. Zang, P. Le, C. S. Tsai, “Integrated Electrooptic Bragg Modulator Modules for Optical Computing,” in Technical Digest, Topical Meeting On Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 193–196.

Moslchi, B.

Psaltis, D.

T. J. Bicknell, D. Psaltis, A. R. Tanguay, “Integrated-Optical Synthetic Aperture Radar Processor,” J. Opt. Soc. Am. A 2 (13), P8 (1985).

Rhodes, W. J.

H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
[Crossref]

Schroeder, E. R.

Shaw, J. H.

Stilwell, P. D.

Tanguay, A. R.

T. J. Bicknell, D. Psaltis, A. R. Tanguay, “Integrated-Optical Synthetic Aperture Radar Processor,” J. Opt. Soc. Am. A 2 (13), P8 (1985).

Tsai, C. S.

D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Exchanged Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264 (1986).
[Crossref] [PubMed]

D. Y. Zang, C. S. Tsai, “Signal-Mode Waveguide Microlenses and Microlens Array Fabrication in LiNbO3 Using Titanium Indiffused Proton Exchanged Technique,” Appl. Phys. Lett. 46, 703 (1985).
[Crossref]

C. S. Tsai, D. Y. Zang, P. Le, “Acousto-Optic Bragg Diffraction in a LiNbO3 Channel-Planar Composite Waveguide with Application to Optical Computing,” Appl. Phys. Lett. 47, 549 (1985).
[Crossref]

C. S. Tsai, “LiNbO3-Based Integrated-Optic Device Modules for Communication, Computing, and Signal Processing,” in Technical Digest, Conference On Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF1.

D. Y. Zang, P. Le, C. S. Tsai, “Integrated Electrooptic Bragg Modulator Modules for Optical Computing,” in Technical Digest, Topical Meeting On Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 193–196.

Tur, M.

Verber, C. M.

C. M. Verber, “Integrated Optical Approaches to Numerical Optical Processing,” Proc. IEEE. 72, 949 (1984).
[Crossref]

Zang, D. Y.

D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Exchanged Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264 (1986).
[Crossref] [PubMed]

D. Y. Zang, C. S. Tsai, “Signal-Mode Waveguide Microlenses and Microlens Array Fabrication in LiNbO3 Using Titanium Indiffused Proton Exchanged Technique,” Appl. Phys. Lett. 46, 703 (1985).
[Crossref]

C. S. Tsai, D. Y. Zang, P. Le, “Acousto-Optic Bragg Diffraction in a LiNbO3 Channel-Planar Composite Waveguide with Application to Optical Computing,” Appl. Phys. Lett. 47, 549 (1985).
[Crossref]

D. Y. Zang, P. Le, C. S. Tsai, “Integrated Electrooptic Bragg Modulator Modules for Optical Computing,” in Technical Digest, Topical Meeting On Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 193–196.

Appl. Opt. (3)

Appl. Phys. Lett. (2)

D. Y. Zang, C. S. Tsai, “Signal-Mode Waveguide Microlenses and Microlens Array Fabrication in LiNbO3 Using Titanium Indiffused Proton Exchanged Technique,” Appl. Phys. Lett. 46, 703 (1985).
[Crossref]

C. S. Tsai, D. Y. Zang, P. Le, “Acousto-Optic Bragg Diffraction in a LiNbO3 Channel-Planar Composite Waveguide with Application to Optical Computing,” Appl. Phys. Lett. 47, 549 (1985).
[Crossref]

J. Opt. Soc. Am. A (1)

T. J. Bicknell, D. Psaltis, A. R. Tanguay, “Integrated-Optical Synthetic Aperture Radar Processor,” J. Opt. Soc. Am. A 2 (13), P8 (1985).

Opt. Commun. (1)

H. J. Caulfield, W. J. Rhodes, M. J. Foster, S. Horvita, “Optical Implementation of Systolic Array Processing,” Opt. Commun. 40, 86 (1981).
[Crossref]

Opt. Lett. (2)

Proc. IEEE. (1)

C. M. Verber, “Integrated Optical Approaches to Numerical Optical Processing,” Proc. IEEE. 72, 949 (1984).
[Crossref]

Other (2)

C. S. Tsai, “LiNbO3-Based Integrated-Optic Device Modules for Communication, Computing, and Signal Processing,” in Technical Digest, Conference On Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1986), paper MF1.

D. Y. Zang, P. Le, C. S. Tsai, “Integrated Electrooptic Bragg Modulator Modules for Optical Computing,” in Technical Digest, Topical Meeting On Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 193–196.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Multiple focused light spots from a TIPE sixty-element linear microlens array in a LiNbO3 waveguide (60-μm aperture and 200-μm focal length for each element lens).

Fig. 2
Fig. 2

Linear microlens array-integrating lens combination in LiNbO3 channel-planar composite waveguide.

Fig. 3
Fig. 3

Integrated electrooptic Bragg modulator module in Y-cut LiNbO3 for matrix–vector multiplication.

Fig. 4
Fig. 4

Integrated electrooptic Bragg modulator in Y-cut LiNbO3 for matrix–matrix multiplication.

Fig. 5
Fig. 5

(a) Integrated electrooptic module using a conventional electrode array. (b) Integrated electrooptic module using herringbone electrode array.

Fig. 6
Fig. 6

Diffracted and undiffracted light spots from a conventional electrode array.

Fig. 7
Fig. 7

Electrooptic Bragg diffraction efficiency vs dc drive voltage.

Fig. 8
Fig. 8

Bragg diffraction efficiency vs the drive frequency for herringbone electrode array.

Fig. 9
Fig. 9

Configuration of a herringbone electrode array.

Fig. 10
Fig. 10

Fabricated herringbone electrooptic grating array: (a) central portion of interdigital electrode arrays; (b) enlarged element interdigital electrode.

Fig. 11
Fig. 11

Electrooptic Bragg diffraction from a herringbone grating in Y-cut LiNbO3 waveguide: (a) incident (undiffracted) light; (b) diffracted light from the first grating and undiffracted light; (c) diffracted light from both gratings and undiffracted light.

Fig. 12
Fig. 12

Efficiency of the doubly diffracted light vs dc drive voltage.

Fig. 13
Fig. 13

Block diagram for matrix–vector multiplication using integrated electrooptic Bragg modulator module.

Fig. 14
Fig. 14

Matrix–vector multiplication using integrated electrooptic Bragg modulator module in Y-cut LiNbO3.

Fig. 15
Fig. 15

2 × 2 Matrix–matrix multiplication using integrated electrooptic Bragg module.

Tables (1)

Tables Icon

Table I Design Parameters and Measured Performances of EO Bragg Diffraction Gratings

Metrics