Abstract

Using the thermal self-electrooptic effect, optical bistability is observed in a hybrid etalon of semi-insulating GaAs:Cr material at the nonresonant wavelength of 1.06 μm. The nonlinearity is traced back to a temperature-dependent index of refraction, largely enhanced by the optoelectronically induced electrical power arising from photocurrent flow. The optical absorption is attributed to bandtailing effects due to the trapping centers. Optoelectronic and gate operation between optical and electrical input signals is achieved.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
    [CrossRef]
  2. D. Jager, F. Forsmann, B. Wedding, “Low-Power Optical Bistability and Multistability in a Self-Electro-Optic Silicon Interferometer,” IEEE J. Quantum Electron. QE-21, 1453 (1985).
    [CrossRef]
  3. F. Forsmann, D. Jager, W. Niessen, “Nonresonant Optical Bistability in InP:Fe SEED Devices,” Opt. Commun. 62, 193 (1987).
    [CrossRef]
  4. A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
    [CrossRef]
  5. F. Forsmann, D. Jager, “Optoelectronic and Optical Bistability in Si and InP SEED Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 800, 183 (1987).
  6. D. Jager, F. Forsmann, “Optical, Optoelectronic and Electrical Bistability and Multistability in a Si Schottky SEED,” Solid-State Electron. 30, 67 (1987).
    [CrossRef]
  7. F. Forsmann, D. Jager, “Thermooptical SEED Devices: External Control of Nonlinearity, Bistability and Switching Behavior,” Appl. Phys. B, in press.
  8. P. Mandel, “Scaling Properties of Switching Pulses,” Opt. Commun. 55, 293 (1985).
    [CrossRef]
  9. J. M. Halley, J. E. Midwinter, “Thermo-Optic Bistable Devices: Theory of Operation in Freestanding Films,” Opt. Quantum Electron. 18, 57 (1986).
    [CrossRef]

1987 (3)

F. Forsmann, D. Jager, W. Niessen, “Nonresonant Optical Bistability in InP:Fe SEED Devices,” Opt. Commun. 62, 193 (1987).
[CrossRef]

F. Forsmann, D. Jager, “Optoelectronic and Optical Bistability in Si and InP SEED Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 800, 183 (1987).

D. Jager, F. Forsmann, “Optical, Optoelectronic and Electrical Bistability and Multistability in a Si Schottky SEED,” Solid-State Electron. 30, 67 (1987).
[CrossRef]

1986 (1)

J. M. Halley, J. E. Midwinter, “Thermo-Optic Bistable Devices: Theory of Operation in Freestanding Films,” Opt. Quantum Electron. 18, 57 (1986).
[CrossRef]

1985 (3)

P. Mandel, “Scaling Properties of Switching Pulses,” Opt. Commun. 55, 293 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

D. Jager, F. Forsmann, B. Wedding, “Low-Power Optical Bistability and Multistability in a Self-Electro-Optic Silicon Interferometer,” IEEE J. Quantum Electron. QE-21, 1453 (1985).
[CrossRef]

1984 (1)

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Ballmann, A. A.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Forsmann, F.

F. Forsmann, D. Jager, W. Niessen, “Nonresonant Optical Bistability in InP:Fe SEED Devices,” Opt. Commun. 62, 193 (1987).
[CrossRef]

F. Forsmann, D. Jager, “Optoelectronic and Optical Bistability in Si and InP SEED Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 800, 183 (1987).

D. Jager, F. Forsmann, “Optical, Optoelectronic and Electrical Bistability and Multistability in a Si Schottky SEED,” Solid-State Electron. 30, 67 (1987).
[CrossRef]

D. Jager, F. Forsmann, B. Wedding, “Low-Power Optical Bistability and Multistability in a Self-Electro-Optic Silicon Interferometer,” IEEE J. Quantum Electron. QE-21, 1453 (1985).
[CrossRef]

F. Forsmann, D. Jager, “Thermooptical SEED Devices: External Control of Nonlinearity, Bistability and Switching Behavior,” Appl. Phys. B, in press.

Glass, A. M.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Halley, J. M.

J. M. Halley, J. E. Midwinter, “Thermo-Optic Bistable Devices: Theory of Operation in Freestanding Films,” Opt. Quantum Electron. 18, 57 (1986).
[CrossRef]

Jager, D.

F. Forsmann, D. Jager, “Optoelectronic and Optical Bistability in Si and InP SEED Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 800, 183 (1987).

F. Forsmann, D. Jager, W. Niessen, “Nonresonant Optical Bistability in InP:Fe SEED Devices,” Opt. Commun. 62, 193 (1987).
[CrossRef]

D. Jager, F. Forsmann, “Optical, Optoelectronic and Electrical Bistability and Multistability in a Si Schottky SEED,” Solid-State Electron. 30, 67 (1987).
[CrossRef]

D. Jager, F. Forsmann, B. Wedding, “Low-Power Optical Bistability and Multistability in a Self-Electro-Optic Silicon Interferometer,” IEEE J. Quantum Electron. QE-21, 1453 (1985).
[CrossRef]

F. Forsmann, D. Jager, “Thermooptical SEED Devices: External Control of Nonlinearity, Bistability and Switching Behavior,” Appl. Phys. B, in press.

Johnson, A. M.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Mandel, P.

P. Mandel, “Scaling Properties of Switching Pulses,” Opt. Commun. 55, 293 (1985).
[CrossRef]

Midwinter, J. E.

J. M. Halley, J. E. Midwinter, “Thermo-Optic Bistable Devices: Theory of Operation in Freestanding Films,” Opt. Quantum Electron. 18, 57 (1986).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Niessen, W.

F. Forsmann, D. Jager, W. Niessen, “Nonresonant Optical Bistability in InP:Fe SEED Devices,” Opt. Commun. 62, 193 (1987).
[CrossRef]

Olson, D. H.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Simpson, W.

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Wedding, B.

D. Jager, F. Forsmann, B. Wedding, “Low-Power Optical Bistability and Multistability in a Self-Electro-Optic Silicon Interferometer,” IEEE J. Quantum Electron. QE-21, 1453 (1985).
[CrossRef]

Wiegmann, E.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

Appl. Phys. Lett. (1)

A. M. Glass, A. M. Johnson, D. H. Olson, W. Simpson, A. A. Ballmann, “Four-Wave Mixing in Semi-Insulating InP and GaAs Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

IEEE J. Quantum Electron. (2)

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, E. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985).
[CrossRef]

D. Jager, F. Forsmann, B. Wedding, “Low-Power Optical Bistability and Multistability in a Self-Electro-Optic Silicon Interferometer,” IEEE J. Quantum Electron. QE-21, 1453 (1985).
[CrossRef]

Opt. Commun. (2)

F. Forsmann, D. Jager, W. Niessen, “Nonresonant Optical Bistability in InP:Fe SEED Devices,” Opt. Commun. 62, 193 (1987).
[CrossRef]

P. Mandel, “Scaling Properties of Switching Pulses,” Opt. Commun. 55, 293 (1985).
[CrossRef]

Opt. Quantum Electron. (1)

J. M. Halley, J. E. Midwinter, “Thermo-Optic Bistable Devices: Theory of Operation in Freestanding Films,” Opt. Quantum Electron. 18, 57 (1986).
[CrossRef]

Proc. Soc. Photo-Opt. Instrum. Eng. (1)

F. Forsmann, D. Jager, “Optoelectronic and Optical Bistability in Si and InP SEED Devices,” Proc. Soc. Photo-Opt. Instrum. Eng. 800, 183 (1987).

Solid-State Electron. (1)

D. Jager, F. Forsmann, “Optical, Optoelectronic and Electrical Bistability and Multistability in a Si Schottky SEED,” Solid-State Electron. 30, 67 (1987).
[CrossRef]

Other (1)

F. Forsmann, D. Jager, “Thermooptical SEED Devices: External Control of Nonlinearity, Bistability and Switching Behavior,” Appl. Phys. B, in press.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Self-electrooptic effect device on semi-insulating GaAs:Cr material, Rυ = 2.3 kΩ, d = 95 μm, and To = 295 K are the experimental values. The measurements are carried out with a Nd:YAG laser of wavelength λo = 1.06 μm focused to a spot diameter of ~50 μm.

Fig. 2
Fig. 2

Optical bistability (a) and photodetector characteristics (b) of a GaAs:Cr SEED element of Fig. 1. Parameter is the applied voltage Vo = 50, 60, 75, and 105 V for curves (1)–(4), respectively. Recorder output signals are shown.

Fig. 3
Fig. 3

Current voltage characteristic of a GaAs:Cr SEED device at a special tuning where no hysteresis is observed: d = 95 μm and Pin = 25 mW.

Fig. 4
Fig. 4

Basic setup for switching experiments by using electrical signals (1) and optical signals (2) from, a laser diode, see text; Rυ = 2.73 kΩ.

Metrics