Abstract

Limited cascadability and fan-out are among the problems associated with the use of optically bistable Fabry-Perot etalons as optical logic elements. A novel etalon-based device is described which is shown to have a much increased cascadability, and therefore fan-out capability, over conventional optical logic elements.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45 (1987).
    [CrossRef]
  2. S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
    [CrossRef]
  3. F. A. P. Tooley, “Fan-Out Considerations of Digital Optical Circuits,” Appl. Opt. 26, 1741 (1987).
    [CrossRef] [PubMed]
  4. M. E. Prise, N. Streibl, M. M. Downs, “Computational Properties of Nonlinear Optical Devices,” in Technical Digest, Lake Tahoe Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).
  5. E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).
  6. I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
    [CrossRef]
  7. A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145 (1986).
    [CrossRef]
  8. J. L. Jewell et al., “3-pJ, 82-MHz Optical Logic Gates in a Room-Temperature GaAs-AlGaAs Multiple-Quantum-Well Etalon,” Appl. Phys. Lett. 46, 918 (1985).
    [CrossRef]
  9. B. S. Wherrett, D. Hutchings, D. Russell, “Optically Bistable Interference Filters: Optimization Considerations,” J. Opt. Soc. Am. B 3, 351 (1986).
    [CrossRef]
  10. B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation on Reflection,” IEEE J. Quantum Electron. QE-20, 6 (1984).
  11. B. S. Wherrett, “Semiconductor Optical Bistability: Towards the Optical Computer,” in Nonlinear Optics: Materials and Devices, C. Flytzanis, J. L. Oudar, Eds. (Springer-Verlag, New York, 1986).
    [CrossRef]

1987 (3)

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45 (1987).
[CrossRef]

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
[CrossRef]

F. A. P. Tooley, “Fan-Out Considerations of Digital Optical Circuits,” Appl. Opt. 26, 1741 (1987).
[CrossRef] [PubMed]

1986 (3)

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145 (1986).
[CrossRef]

B. S. Wherrett, D. Hutchings, D. Russell, “Optically Bistable Interference Filters: Optimization Considerations,” J. Opt. Soc. Am. B 3, 351 (1986).
[CrossRef]

1985 (1)

J. L. Jewell et al., “3-pJ, 82-MHz Optical Logic Gates in a Room-Temperature GaAs-AlGaAs Multiple-Quantum-Well Etalon,” Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

1984 (1)

B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation on Reflection,” IEEE J. Quantum Electron. QE-20, 6 (1984).

1980 (1)

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).

Abraham, E.

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

Allen, S. D.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).

Downs, M. M.

M. E. Prise, N. Streibl, M. M. Downs, “Computational Properties of Nonlinear Optical Devices,” in Technical Digest, Lake Tahoe Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Garmire, E.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).

Hutchings, D.

Janossy, I.

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

Jewell, J. L.

J. L. Jewell et al., “3-pJ, 82-MHz Optical Logic Gates in a Room-Temperature GaAs-AlGaAs Multiple-Quantum-Well Etalon,” Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

Marburger, J. H.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).

Mathew, J. G. H.

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

Prise, M. E.

M. E. Prise, N. Streibl, M. M. Downs, “Computational Properties of Nonlinear Optical Devices,” in Technical Digest, Lake Tahoe Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Russell, D.

Smith, S. D.

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45 (1987).
[CrossRef]

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
[CrossRef]

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

Streibl, N.

M. E. Prise, N. Streibl, M. M. Downs, “Computational Properties of Nonlinear Optical Devices,” in Technical Digest, Lake Tahoe Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Taghizadeh, M. R.

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

Tooley, F. A. P.

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
[CrossRef]

F. A. P. Tooley, “Fan-Out Considerations of Digital Optical Circuits,” Appl. Opt. 26, 1741 (1987).
[CrossRef] [PubMed]

Walker, A. C.

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
[CrossRef]

A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145 (1986).
[CrossRef]

Wherrett, B. S.

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
[CrossRef]

B. S. Wherrett, D. Hutchings, D. Russell, “Optically Bistable Interference Filters: Optimization Considerations,” J. Opt. Soc. Am. B 3, 351 (1986).
[CrossRef]

B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation on Reflection,” IEEE J. Quantum Electron. QE-20, 6 (1984).

B. S. Wherrett, “Semiconductor Optical Bistability: Towards the Optical Computer,” in Nonlinear Optics: Materials and Devices, C. Flytzanis, J. L. Oudar, Eds. (Springer-Verlag, New York, 1986).
[CrossRef]

Winful, H. G.

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. L. Jewell et al., “3-pJ, 82-MHz Optical Logic Gates in a Room-Temperature GaAs-AlGaAs Multiple-Quantum-Well Etalon,” Appl. Phys. Lett. 46, 918 (1985).
[CrossRef]

IEEE J. Quantum Electron. (2)

I. Janossy, J. G. H. Mathew, E. Abraham, M. R. Taghizadeh, S. D. Smith, “Dynamics of Thermally Induced Optical Bistability,” IEEE J. Quantum Electron. QE-22, 2224 (1986).
[CrossRef]

B. S. Wherrett, “Fabry-Perot Bistable Cavity Optimisation on Reflection,” IEEE J. Quantum Electron. QE-20, 6 (1984).

J. Opt. Soc. Am. B (1)

Nature London (1)

S. D. Smith, A. C. Walker, F. A. P. Tooley, B. S. Wherrett, “The Demonstration of Restoring Digital Optical Logic,” Nature London 325, 27 (1987).
[CrossRef]

Opt. Commun. (1)

A. C. Walker, “Reflection Bistable Etalons with Absorbed Transmission,” Opt. Commun. 59, 145 (1986).
[CrossRef]

Opt. Eng. (1)

S. D. Smith et al., “Restoring Optical Logic: Demonstration of Extensible All-Optical Digital Systems,” Opt. Eng. 26, 45 (1987).
[CrossRef]

Phys. Rev. Lett. (1)

E. Garmire, J. H. Marburger, S. D. Allen, H. G. Winful, “Transient Response of Hybrid Bistable Devices,” Phys. Rev. Lett. 45, 709 (1980).

Other (2)

B. S. Wherrett, “Semiconductor Optical Bistability: Towards the Optical Computer,” in Nonlinear Optics: Materials and Devices, C. Flytzanis, J. L. Oudar, Eds. (Springer-Verlag, New York, 1986).
[CrossRef]

M. E. Prise, N. Streibl, M. M. Downs, “Computational Properties of Nonlinear Optical Devices,” in Technical Digest, Lake Tahoe Topical Meeting on Photonic Switching (Optical Society of America, Washington, DC, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Typical reflection characteristic for an optically bistable Fabry-Perot etalon

Fig. 2
Fig. 2

Optically and thermally coupled twin cavity device.

Fig. 3
Fig. 3

Thermally coupled twin cavity device.

Fig. 4
Fig. 4

Calculated power transfer characteristic for a TCD.

Fig. 5
Fig. 5

Reflection from the input cavity vs input power for a TCD.

Fig. 6
Fig. 6

Reflection from the input cavity vs temperature rise for a TCD.

Fig. 7
Fig. 7

Experimental setup for assessment of a TCD.

Fig. 8
Fig. 8

Experimental power transfer characteristic for a TCD.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I A = J A I O A 1 + F α A sin 2 ( ϕ A ) ,
I B = J B I O B 1 + F α B sin 2 ( ϕ B ) ,
M A , B = ( 1 + R b A , B a A , B ) ( 1 a A , B ) ( 1 R b A , B ) α A , B D A , B a A , B ,
N A , B = ( 1 R f A , B ) ( 1 R b A , B ) a A , B ( 1 R α A , B ) 2 ,
ϕ A , B = 2 π λ n A , B + d n d T A , B Δ T D A , B ,
Δ T r 0 K ( α A D A I A + I T A ) + ( α B D B I B + I T B ) ,
I A , B = M A , B I T A , B , Δ T r 0 K ( α A D A + 1 / M A ) I A + ( α B D B + 1 / M B ) I B .
I R B = I O B I T B I B α B D B ,
I T B = I B / M B .

Metrics