Abstract

The index grating lifetime in liquid encapsulated Czochralski-grown undoped semi-insulating GaAs was measured using a beam coupling technique. The largest lifetime measured was ~8 s under a read beam intensity of 0.7 mW/cm2 with the grating periodicity being 0.63 μm. The measured value decreases to milliseconds as the read beam intensity and the grating periodicity increase to ~10 mW/cm2 and 4 μm, respectively. This range of grating lifetime in this material is adequate for its use in real-time spatial light modulators, reconfigurable beam steering devices, and dynamic memory elements for optical computing. In addition, the results suggest that the lifetime is sensitive to residual imperfections in the crystal.

© 1988 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
    [CrossRef]
  2. M. B. Klein, “Beam Coupling in Undoped GaAs at 1.06 μm Using the Photorefractive Effect,” Opt. Lett. 9, 350 (1984).
    [CrossRef] [PubMed]
  3. G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, T. F. Boggess, “Picosecond Photorefractive Beam Coupling in GaAs,” Opt. Lett. 11, 647 (1986).
    [CrossRef] [PubMed]
  4. L. J. Cheng, A. Partovi, “Temperature and Intensity Dependence of Photorefractive Effect in GaAs,” Appl. Phys. Lett. 49, 1456 (1986).
    [CrossRef]
  5. J. Strait, A. M. Glass, “Photorefractive Four-Wave Mixing in GaAs Using Diode Lasers Operating at 1.3 μm,” Appl. Opt. 25, 338 (1986).
    [CrossRef] [PubMed]
  6. L. J. Cheng, G. Gheen, T. H. Chao, H. K. Liu, A. Partovi, J. Katz, “Spatial Light Modulation by Beam Coupling in GaAs Crystals,” Opt. Lett. 12, 705 (1987).
    [CrossRef] [PubMed]
  7. G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
    [CrossRef]
  8. G. Gheen, L. J. Cheng, “Image Processing by Four-Wave Mixing in Photorefractive GaAs,” Appl. Phys. Lett. 51, 1481 (1987).
    [CrossRef]
  9. J. Strait, A. M. Glass, “Time-Resolved Photorefractive Four-Wave Mixing in Semiconductor Materials,” J. Opt. Soc. Am. B 3, 342 (1986).
    [CrossRef]
  10. G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704 (1983).
    [CrossRef]
  11. P. Gunter, “Photorefractive Materials,” in Handbook of Laser Science and Technology, M. V. Weber, Ed. (CRC Press, Boca Raton, FL, 1986), Vol. 2, p. 343.
  12. R. A. Mullen, Photorefractive Measurements of Physical Parameters (Springer-Verlag, New York, 1984).
  13. M. Carrascosa, F. Agullo-Lopez, “Kinetics for Optical Erasure of Simusoidal Holographic Gratings in Photorefractive Materials,” IEEE J. Quantum Electron. QE-22, 1369 (1986).
    [CrossRef]
  14. L. Samuelson, “Defect Levels in Semiconductor Alloys,” in Proceedings, Thirteenth International Conference on Defects in Semiconductors (Metallurgical Society of AIME, Warrendale, PA, 1985), p. 101.
  15. G. C. Valley, “Simultaneous Electron/Hole Transport in Photorefractive Materials,” J. Appl. Phys. 59, 3363 (1986) and references cited therein.
    [CrossRef]
  16. P. Dobrilla, J. S. Blakemore, “Distribution of Residual Stress Dislocations, and EL2 in Czochralski-Grown Semi-Insulating GaAs,” J. Appl. Phys. 60, 169 (1986).
    [CrossRef]
  17. R. B. Bylsma, A. M. Glass, “Photorefractive Image of the Image of the Electrical Properties of Semiconductor Wafers,” in Proceedings, Topical Conference on Defect Recognition and Image Pattern II, Monterey, CA (27–28 Apr. 1987), to be published.

1987 (3)

L. J. Cheng, G. Gheen, T. H. Chao, H. K. Liu, A. Partovi, J. Katz, “Spatial Light Modulation by Beam Coupling in GaAs Crystals,” Opt. Lett. 12, 705 (1987).
[CrossRef] [PubMed]

G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
[CrossRef]

G. Gheen, L. J. Cheng, “Image Processing by Four-Wave Mixing in Photorefractive GaAs,” Appl. Phys. Lett. 51, 1481 (1987).
[CrossRef]

1986 (7)

J. Strait, A. M. Glass, “Time-Resolved Photorefractive Four-Wave Mixing in Semiconductor Materials,” J. Opt. Soc. Am. B 3, 342 (1986).
[CrossRef]

G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, T. F. Boggess, “Picosecond Photorefractive Beam Coupling in GaAs,” Opt. Lett. 11, 647 (1986).
[CrossRef] [PubMed]

L. J. Cheng, A. Partovi, “Temperature and Intensity Dependence of Photorefractive Effect in GaAs,” Appl. Phys. Lett. 49, 1456 (1986).
[CrossRef]

J. Strait, A. M. Glass, “Photorefractive Four-Wave Mixing in GaAs Using Diode Lasers Operating at 1.3 μm,” Appl. Opt. 25, 338 (1986).
[CrossRef] [PubMed]

M. Carrascosa, F. Agullo-Lopez, “Kinetics for Optical Erasure of Simusoidal Holographic Gratings in Photorefractive Materials,” IEEE J. Quantum Electron. QE-22, 1369 (1986).
[CrossRef]

G. C. Valley, “Simultaneous Electron/Hole Transport in Photorefractive Materials,” J. Appl. Phys. 59, 3363 (1986) and references cited therein.
[CrossRef]

P. Dobrilla, J. S. Blakemore, “Distribution of Residual Stress Dislocations, and EL2 in Czochralski-Grown Semi-Insulating GaAs,” J. Appl. Phys. 60, 169 (1986).
[CrossRef]

1984 (2)

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

M. B. Klein, “Beam Coupling in Undoped GaAs at 1.06 μm Using the Photorefractive Effect,” Opt. Lett. 9, 350 (1984).
[CrossRef] [PubMed]

1983 (1)

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704 (1983).
[CrossRef]

Agullo-Lopez, F.

M. Carrascosa, F. Agullo-Lopez, “Kinetics for Optical Erasure of Simusoidal Holographic Gratings in Photorefractive Materials,” IEEE J. Quantum Electron. QE-22, 1369 (1986).
[CrossRef]

Ballman, A. A.

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Blakemore, J. S.

P. Dobrilla, J. S. Blakemore, “Distribution of Residual Stress Dislocations, and EL2 in Czochralski-Grown Semi-Insulating GaAs,” J. Appl. Phys. 60, 169 (1986).
[CrossRef]

Boggess, T. F.

Bohnert, K.

Bylsma, R. B.

R. B. Bylsma, A. M. Glass, “Photorefractive Image of the Image of the Electrical Properties of Semiconductor Wafers,” in Proceedings, Topical Conference on Defect Recognition and Image Pattern II, Monterey, CA (27–28 Apr. 1987), to be published.

Carrascosa, M.

M. Carrascosa, F. Agullo-Lopez, “Kinetics for Optical Erasure of Simusoidal Holographic Gratings in Photorefractive Materials,” IEEE J. Quantum Electron. QE-22, 1369 (1986).
[CrossRef]

Chao, T. H.

Cheng, L. J.

G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
[CrossRef]

G. Gheen, L. J. Cheng, “Image Processing by Four-Wave Mixing in Photorefractive GaAs,” Appl. Phys. Lett. 51, 1481 (1987).
[CrossRef]

L. J. Cheng, G. Gheen, T. H. Chao, H. K. Liu, A. Partovi, J. Katz, “Spatial Light Modulation by Beam Coupling in GaAs Crystals,” Opt. Lett. 12, 705 (1987).
[CrossRef] [PubMed]

L. J. Cheng, A. Partovi, “Temperature and Intensity Dependence of Photorefractive Effect in GaAs,” Appl. Phys. Lett. 49, 1456 (1986).
[CrossRef]

Dobrilla, P.

P. Dobrilla, J. S. Blakemore, “Distribution of Residual Stress Dislocations, and EL2 in Czochralski-Grown Semi-Insulating GaAs,” J. Appl. Phys. 60, 169 (1986).
[CrossRef]

Gheen, G.

L. J. Cheng, G. Gheen, T. H. Chao, H. K. Liu, A. Partovi, J. Katz, “Spatial Light Modulation by Beam Coupling in GaAs Crystals,” Opt. Lett. 12, 705 (1987).
[CrossRef] [PubMed]

G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
[CrossRef]

G. Gheen, L. J. Cheng, “Image Processing by Four-Wave Mixing in Photorefractive GaAs,” Appl. Phys. Lett. 51, 1481 (1987).
[CrossRef]

Glass, A. M.

J. Strait, A. M. Glass, “Time-Resolved Photorefractive Four-Wave Mixing in Semiconductor Materials,” J. Opt. Soc. Am. B 3, 342 (1986).
[CrossRef]

J. Strait, A. M. Glass, “Photorefractive Four-Wave Mixing in GaAs Using Diode Lasers Operating at 1.3 μm,” Appl. Opt. 25, 338 (1986).
[CrossRef] [PubMed]

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

R. B. Bylsma, A. M. Glass, “Photorefractive Image of the Image of the Electrical Properties of Semiconductor Wafers,” in Proceedings, Topical Conference on Defect Recognition and Image Pattern II, Monterey, CA (27–28 Apr. 1987), to be published.

Gunter, P.

P. Gunter, “Photorefractive Materials,” in Handbook of Laser Science and Technology, M. V. Weber, Ed. (CRC Press, Boca Raton, FL, 1986), Vol. 2, p. 343.

Johnson, A. M.

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Katz, J.

Klein, M. B.

Liu, H. K.

Mullen, R. A.

R. A. Mullen, Photorefractive Measurements of Physical Parameters (Springer-Verlag, New York, 1984).

Olsen, D. H.

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Partovi, A.

L. J. Cheng, G. Gheen, T. H. Chao, H. K. Liu, A. Partovi, J. Katz, “Spatial Light Modulation by Beam Coupling in GaAs Crystals,” Opt. Lett. 12, 705 (1987).
[CrossRef] [PubMed]

L. J. Cheng, A. Partovi, “Temperature and Intensity Dependence of Photorefractive Effect in GaAs,” Appl. Phys. Lett. 49, 1456 (1986).
[CrossRef]

Rao, M. F.

G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
[CrossRef]

Samuelson, L.

L. Samuelson, “Defect Levels in Semiconductor Alloys,” in Proceedings, Thirteenth International Conference on Defects in Semiconductors (Metallurgical Society of AIME, Warrendale, PA, 1985), p. 101.

Simpson, W.

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

Smirl, A. L.

Strait, J.

Valley, G. C.

G. C. Valley, “Simultaneous Electron/Hole Transport in Photorefractive Materials,” J. Appl. Phys. 59, 3363 (1986) and references cited therein.
[CrossRef]

G. C. Valley, A. L. Smirl, M. B. Klein, K. Bohnert, T. F. Boggess, “Picosecond Photorefractive Beam Coupling in GaAs,” Opt. Lett. 11, 647 (1986).
[CrossRef] [PubMed]

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704 (1983).
[CrossRef]

Wang, F. C.

G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. M. Glass, A. M. Johnson, D. H. Olsen, W. Simpson, A. A. Ballman, “Four-Wave Mixing in Semi-Insulating InP Using the Photorefractive Effect,” Appl. Phys. Lett. 44, 948 (1984).
[CrossRef]

G. Gheen, L. J. Cheng, “Image Processing by Four-Wave Mixing in Photorefractive GaAs,” Appl. Phys. Lett. 51, 1481 (1987).
[CrossRef]

L. J. Cheng, A. Partovi, “Temperature and Intensity Dependence of Photorefractive Effect in GaAs,” Appl. Phys. Lett. 49, 1456 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Carrascosa, F. Agullo-Lopez, “Kinetics for Optical Erasure of Simusoidal Holographic Gratings in Photorefractive Materials,” IEEE J. Quantum Electron. QE-22, 1369 (1986).
[CrossRef]

J. Appl. Phys. (3)

G. Gheen, L. J. Cheng, M. F. Rao, F. C. Wang, “Image Transfer in Photorefractive GaAs,” J. Appl. Phys. 62, 3991 (1987).
[CrossRef]

G. C. Valley, “Simultaneous Electron/Hole Transport in Photorefractive Materials,” J. Appl. Phys. 59, 3363 (1986) and references cited therein.
[CrossRef]

P. Dobrilla, J. S. Blakemore, “Distribution of Residual Stress Dislocations, and EL2 in Czochralski-Grown Semi-Insulating GaAs,” J. Appl. Phys. 60, 169 (1986).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

G. C. Valley, M. B. Klein, “Optimal Properties of Photorefractive Materials for Optical Data Processing,” Opt. Eng. 22, 704 (1983).
[CrossRef]

Opt. Lett. (3)

Other (4)

P. Gunter, “Photorefractive Materials,” in Handbook of Laser Science and Technology, M. V. Weber, Ed. (CRC Press, Boca Raton, FL, 1986), Vol. 2, p. 343.

R. A. Mullen, Photorefractive Measurements of Physical Parameters (Springer-Verlag, New York, 1984).

R. B. Bylsma, A. M. Glass, “Photorefractive Image of the Image of the Electrical Properties of Semiconductor Wafers,” in Proceedings, Topical Conference on Defect Recognition and Image Pattern II, Monterey, CA (27–28 Apr. 1987), to be published.

L. Samuelson, “Defect Levels in Semiconductor Alloys,” in Proceedings, Thirteenth International Conference on Defects in Semiconductors (Metallurgical Society of AIME, Warrendale, PA, 1985), p. 101.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup for measuring index grating lifetime in GaAs.

Fig. 2
Fig. 2

Two oscilloscope traces of Is with different close durations of Ip. The Is signals were biased with a dc voltage so that the effect of Ip could be observed.

Fig. 3
Fig. 3

Decay of the fast rising component in sample A as a function of shutter closed duration under two different Is. The incident angle of two beams was 94°.

Fig. 4
Fig. 4

Measured index grating lifetime in sample A as a function of Is intensity and grating periodicity. The solid curves are calculated grating lifetimes using Eqs. (1) and (2) with known material parameters and fitting factors of x and sa being 0.8 and 0.15, respectively.

Fig. 5
Fig. 5

Measured index grating lifetime in samples from three different suppliers as function of Is.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

τ = ε 0 ε e μ n 0 [ 1 + μ k b T e r A N A ( 2 π Λ g ) 2 ] ,
n 0 = ( β + s I ) N D 0 r A N A ,
τ = ε 0 ε k b T e 2 ( β + s I ) N D 0 ( 2 π Λ g ) 2 .
τ = ε 0 ε k b T e 2 ( β + s a I x ) N D 0 ( 2 π Λ g ) 2 ,

Metrics